Data Mining

Building Competitive Advantage

av Robert Groth. Mixed media product, 1999

Pris:  633:-
Specialorder (osäker tillgång). Skickas inom 11-20 vardagar.
Fri frakt inom Sverige för privatpersoner vid beställning på minst 99 kr!

Kundrecensioner

Bli först att betygsätta och recensera produkten .

  • Mixed media product
  • Språk: Engelska
  • Antal sidor: 325
  • Utg.datum: 1999-10-01
  • Upplaga: 1
  • Förlag: Prentice Hall
  • Illustrationer: illustrations
  • Antal komponenter: 2
  • Komponenter: Paperback (1), CD-ROM (1)
  • ISBN: 9780130862716

Bloggat om

Övrig information

<p> ROBERT GROTH has worked in the high tech arena for over 14 years and has consulted for many Fortune 500 companies on large-scale data mining projects. He is also the author of the successful Hands-On SQL

Innehållsförteckning

I. STARTING OUT.

1. Introduction to Data Mining.

What Is Data Mining? Why Use Data Mining? Case Studies of Implementing Data Mining. A Process for Successfully Deploying Data Mining for Competitive Advantage. A Note on Privacy Issues. Summary.

2. Getting Started with Data Mining.

Classification (Supervised Learning). Clustering (Unsupervised Learning). A Clustering Example. Visualization. Association (Market Basket). Assortment Optimization. Prediction. Estimation. Summary.

3. The Data-Mining Process.

Discussion of Data-Mining Methodology. The Example. Data Preparation. Defining a Study. Reading the Data and Building a Model. Understanding Your Model. Prediction. Summary.

4. Data-Mining Algorithms.

Introduction. Decision Trees. Genetic Algorithms. Neural Networks. Bayesian Belief Networks. Statistics. Advanced Algorithms for Association. Algorithms for Assortment Optimization. Summary.

5. The Data-Mining Marketplace.

Introduction (Trends). Data-Mining Vendors. Visualization. Useful Web Sites/Commercially Available Code. Data Sources For Mining. Summary.

II. A RAPID TUTORIAL.

6. A Look at Angoss: KnowledgeSEEKER.

Introduction. Data Preparation. Defining the Study. Building the Model. Understanding the Model. Prediction. Summary.

7. A Look at RightPoint DataCruncher.

Introduction. Data Preparation. Defining the Study. Read Your Data/Build a Discovery Model. Understanding the Model. Perform Prediction. Summary.

III. INDUSTRY FOCUS.

8. Industry Applications of Data Mining.

Data-Mining Applications in Banking and Finance. Data-Mining Applications in Retail. Data-Mining Applications in Healthcare. Data-Mining Applications in Telecommunications. Summary.

9. Enabling Data Mining through Data Warehouses.

Introduction. A Data-Warehouse Example in Banking and Finance. A Data-Warehouse Example in Retail. A Data-Warehouse Example in Healthcare. A Data-Warehouse Example in Telecommunications. Summary.

Appendix A: Data-Mining Vendors.

Data-Mining Players. Visualization Tools. Useful Web Sites. Information Access Providers. Data-Warehousing Vendors.

Appendix B: Installing Demo Software.

Installing Angoss KnowledgeSEEKER Demo. Installing the RightPointPoint DataCruncher Demo.

Appendix C: References.
Index.