Sommarens bästa pocketerbjudande
Introduction to Data Mining (häftad)
Fler böcker inom
Häftad (Paperback)
Antal sidor
Steinbach, Michael / Kumar, Vipin
230 x 195 x 25 mm
1120 g
Antal komponenter
Introduction to Data Mining (häftad)

Introduction to Data Mining

International Edition

Häftad Engelska, 2005-09-01
Tillfälligt slut – klicka "Bevaka" för att få ett mejl så fort boken går att köpa igen.
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics.  

Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.




This book provides a comprehensive coverage of important data mining techniques. Numerous examples are provided to lucidly illustrate the key concepts.

-Sanjay Ranka, University of Florida


In my opinion this is currently the best data mining text book on the market. I like the comprehensive coverage which spans all major data mining techniques including classification, clustering, and pattern mining (association rules).

-Mohammed Zaki, Rensselaer Polytechnic Institute
Visa hela texten


Har du läst boken? Sätt ditt betyg »

Fler böcker av Pang-Ning Tan

Bloggat om Introduction to Data Mining



1 Introduction

1.1 What is Data Mining?

1.2 Motivating Challenges

1.3 The Origins of Data Mining

1.4 Data Mining Tasks

1.5 Scope and Organization of the Book 

1.6 Bibliographic Notes

1.7 Exercises


2 Data

2.1 Types of Data

2.2 Data Quality

2.3 Data Preprocessing

2.4 Measures of Similarity and Dissimilarity

2.5 Bibliographic Notes

2.6 Exercises


3 Exploring Data

3.1 The Iris Data Set 

3.2 Summary Statistics

3.3 Visualization

3.4 OLAP and Multidimensional Data Analysis

3.5 Bibliographic Notes

3.6 Exercises


4 Classification: Basic Concepts, Decision Trees, and Model Evaluation

4.1 Preliminaries

4.2 General Approach to Solving a Classification Problem

4.3 Decision Tree Induction

4.4 Model Overfitting

4.5 Evaluating the Performance of a Classifier

4.6 Methods for Comparing Classifiers

4.7 Bibliographic Notes

4.8 Exercises


5 Classification: Alternative Techniques

5.1 Rule-Based Classifier

5.2 Nearest-Neighbor Classifiers

5.3 Bayesian Classifiers

5.4 Artificial Neural Network (ANN)

5.5 Support Vector Machine (SVM)

5.6 Ensemble Methods

5.7 Class Imbalance Problem

5.8 Multiclass Problem

5.9 Bibliographic Notes

5.10 Exercises


6 Association Analysis: Basic Concepts and Algorithms

6.1 Problem Definition

6.2 Frequent Itemset Generation

6.3 Rule Generation

6.4 Compact Representation of Frequent Itemsets

6.5 Alternative Methods for Generating Frequent Itemsets

6.6 FP-Growth Algorithm

6.7 Evaluation of Association Patterns

6.8 Effect of Skewed Support Distribution

6.9 Bibliographic Notes

6.10 Exercises


7 Association Analysis: Advanced Concepts 


7.1 Handling Categorical Attributes

7.2 Handling Continuous Attributes

7.3 Handling a Concept Hierarchy

7.4 Sequential Patterns

7.5 Subgraph Patterns

7.6 Infrequent Patterns

7.7 Bibliographic Notes

7.8 Exercises


8 Cluster Analysis: Basic Concepts and Algorithms

8.1 Overview

8.2 K-means

8.3 Agglomerative Hierarchical Clustering


8.5 Cluster Eval...