Thermal Inertia in Energy Efficient Building Envelopes (häftad)
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
374
Utgivningsdatum
2017-08-31
Förlag
Butterworth-Heinemann
Dimensioner
222 x 146 x 25 mm
Vikt
612 g
Antal komponenter
1
ISBN
9780128139707

Thermal Inertia in Energy Efficient Building Envelopes

Häftad,  Engelska, 2017-08-31
1233
  • Skickas från oss inom 10-15 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 1 format & utgåvor
The design and construction of the appropriate building envelope is one of the most effective ways for improving a building's thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact.

Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation
  • Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes
  • Laboratory tests on existing insulation to quantify the actual performances
  • Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies
  • Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios
  • Integrated evaluations between various aspects such as comfort, energy saving, and sustainability
Visa hela texten

Passar bra ihop

  1. Thermal Inertia in Energy Efficient Building Envelopes
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 1522 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Francesca Stazi

  • Advanced Building Envelope Components

    Francesca Stazi

    Advanced Building Envelope Components: Comparative Experiments focuses on the latest research in innovative materials, systems and components, also providing a detailed technical explanation on what this breakthrough means for building exteriors a...

  • Impact of Occupants' Behaviour on Zero-Energy Buildings

    Francesca Stazi, Federica Naspi

    This book highlights the importance of human behaviour in the building design process, with a focus on the construction of zero-energy buildings. It reports on and discusses the strategies the authors have adopted to develop behavioural models, an...

Övrig information

Francesca Stazi, Ph.D, is Associate Professor at Polytechnic University of Marche. She carries out experimental and numerical research activities in the field of Building Science and Technology. The aim is to optimize the building envelope in terms of energy saving, thermal comfort, environmental sustainability and durability of the components. The researches cover new and existing envelopes, ventilated facades and passive solar systems. The acquired knowledge was applied in the patenting of two industrial inventions, an innovative ventilated thermal insulation and a GFRP frame for windows. The results of the studies are reported in 65 publications, including 25 papers on international ISI journals. She is also a reviewer for various international ISI Journals.

Innehållsförteckning

1. High thermal resistance versus high thermal capacity: The dilemma2. The envelope: A complex and dynamic problem3. Retrofit of existing envelopes4. New envelopes5. Passive envelopes6. Methods: Experimental surveys, analytic explorations and model reliability