Data Mining
Mixed media product
Antal sidor
Prentice Hall
Antal komponenter
CD-ROM (1), Paperback (1)
Data Mining

Data Mining

Building Competitive Advantage

Mixed media product Engelska, 1999-10-01
Specialorder (osäker tillgång). Skickas inom 11-20 vardagar.
Fri frakt inom Sverige för privatpersoner.

"Finally, here's a book that explains in plain English what data mining is and how it's used to improve a company's bottom line . . . Groth takes a very complex and vast field and makes it comprehensible." Miguel A. Castro, Ph.D., President, Dovetail Solutions

Data mining business solutions-practical, up-to-date, and hands-on!

With data mining, you can achieve competitive advantage from the data you've already paid to compile. Data Mining: Building Competitive Advantage shows you how. You won't just learn the theory and concepts of data mining; you'll discover how to apply them-hands-on, through real applications!

Coverage includes:

  • Case studies in banking, finance, retail, healthcare, direct marketing, and telecommunications
  • The data mining process, start to finish
  • Today's newest, most successful approaches and algorithms
  • Data mining pitfalls-and how to avoid them
  • A close look at industry-leading tools from Angoss and RightPoint
Whether you're a manager, marketer, consultant, analyst, or database professional, Robert Groth will help you master data mining-and deliver all the competitive advantage it promises.

About the Website

The accompanying website includes full trial editions of two of the world's leading desktop data mining tools, Angoss KnowledgeSEEKER and RightPoint DataCruncher.

Visa hela texten

Passar bra ihop

  1. Data Mining
  2. +
  3. Factfulness

De som köpt den här boken har ofta också köpt Factfulness av Hans Rosling (inbunden).

Köp båda 2 för 778 kr


Bloggat om Data Mining

Övrig information

<p> ROBERT GROTH has worked in the high tech arena for over 14 years and has consulted for many Fortune 500 companies on large-scale data mining projects. He is also the author of the successful Hands-On SQL



1. Introduction to Data Mining.

What Is Data Mining? Why Use Data Mining? Case Studies of Implementing Data Mining. A Process for Successfully Deploying Data Mining for Competitive Advantage. A Note on Privacy Issues. Summary.

2. Getting Started with Data Mining.

Classification (Supervised Learning). Clustering (Unsupervised Learning). A Clustering Example. Visualization. Association (Market Basket). Assortment Optimization. Prediction. Estimation. Summary.

3. The Data-Mining Process.

Discussion of Data-Mining Methodology. The Example. Data Preparation. Defining a Study. Reading the Data and Building a Model. Understanding Your Model. Prediction. Summary.

4. Data-Mining Algorithms.

Introduction. Decision Trees. Genetic Algorithms. Neural Networks. Bayesian Belief Networks. Statistics. Advanced Algorithms for Association. Algorithms for Assortment Optimization. Summary.

5. The Data-Mining Marketplace.

Introduction (Trends). Data-Mining Vendors. Visualization. Useful Web Sites/Commercially Available Code. Data Sources For Mining. Summary.


6. A Look at Angoss: KnowledgeSEEKER.

Introduction. Data Preparation. Defining the Study. Building the Model. Understanding the Model. Prediction. Summary.

7. A Look at RightPoint DataCruncher.

Introduction. Data Preparation. Defining the Study. Read Your Data/Build a Discovery Model. Understanding the Model. Perform Prediction. Summary.


8. Industry Applications of Data Mining.

Data-Mining Applications in Banking and Finance. Data-Mining Applications in Retail. Data-Mining Applications in Healthcare. Data-Mining Applications in Telecommunications. Summary.

9. Enabling Data Mining through Data Warehouses.

Introduction. A Data-Warehouse Example in Banking and Finance. A Data-Warehouse Example in Retail. A Data-Warehouse Example in Healthcare. A Data-Warehouse Example in Telecommunications. Summary.

Appendix A: Data-Mining Vendors.

Data-Mining Players. Visualization Tools. Useful Web Sites. Information Access Providers. Data-Warehousing Vendors.

Appendix B: Installing Demo Software.

Installing Angoss KnowledgeSEEKER Demo. Installing the RightPointPoint DataCruncher Demo.

Appendix C: References.