Handbook of Applied Optimization (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
1116
Utgivningsdatum
2002-02-01
Upplaga
illustrated ed
Förlag
OUP USA
Medarbetare
Resende, Mauricio G. C.
Illustratör/Fotograf
Numerous Line Drawings
Illustrationer
line drawings
Dimensioner
257 x 185 x 61 mm
Vikt
2111 g
Antal komponenter
1
ISBN
9780195125948
Handbook of Applied Optimization (inbunden)

Handbook of Applied Optimization

Inbunden Engelska, 2002-02-01
2169
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Beställ senast idag kl 17:30 för leverans innan jul!
Optimization is an essential tool in every project in large-scale organizations, whether in business, industry, engineering or science. In this text distinguished contributors focus on the algorithmic and computational aspects of optimization, particularly the most recent methods for solving a wide range of decision-making problems. Designed as a practical resource for programmers, project planners, and managers, this book covers optimization problems in a wide
range of settings, from the airline and aerospace industries to telecommunications, finance, health systems, biomedicine, and engineering.
Visa hela texten

Passar bra ihop

  1. Handbook of Applied Optimization
  2. +
  3. Approximation and Complexity in Numerical Optimization

De som köpt den här boken har ofta också köpt Approximation and Complexity in Numerical Optim... av Panos M Pardalos (inbunden).

Köp båda 2 för 5658 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Panos M Pardalos

Recensioner i media

"The editors draw on the expertise of researchers and application specialists from throughout the world."--Choice "This reference provides a guide for applications specialists to the most important instruments and the major recent advances in the field of applied optimization. Pardalos (industrial and systems engineering, U. of Florida) and Resende (research scientist, AT&T Laboratories) present 26 chapters in which expert contributors discuss algorithms (linear, semidefinite, quadratic, nonlinear, stochastic, and integer programming), combinatorial optimization, deterministic global optimization, decomposition methods for mathematical programming, network and hierarchical optimization, artificial neural networks and parallel algorithms in optimization, complementary and related problems, data envelopment analysis, and randomization in discrete optimization. They also cover applications (problem types, application areas) and software."--SciTech Book News

Innehållsförteckning

PrefacePanos M. Pardalos and Mauricio G. C. Resende: IntroductionPanos M. Pardalos and Mauricio G. C. Resende: Part One: Algorithms 1: Linear Programming 1.1: Tamas Terlaky: Introduction 1.2: Tamas Terlaky: Simplex-Type Algorithms 1.3: Kees Roos: Interior-Point Methods for Linear Optimization 2: Henry Wolkowicz: Semidefinite Programming 3: Combinatorial Optimization 3.1: Panos M. Pardalos and Mauricio G. C. Resende: Introduction 3.2: Eva K. Lee: Branch-and-Bound Methods 3.3: John E. Mitchell: Branch-and-Cut Algorithms for Combinatorial Optimization Problems 3.4: Augustine O. Esogbue: Dynamic Programming Approaches 3.5: Mutsunori Yagiura and Toshihide Ibaraki: Local Search 3.6: Metaheuristics 3.6.1: Bruce L. Golden and Edward A. Wasil: Introduction 3.6.2: Eric D. Taillard: Ant Systems 3.6.3: John E. Beasley: Population Heuristics 3.6.4: Pablo Moscato: Memetic Algorithms 3.6.5: Leonidas S. Pitsoulis and Mauricio G. C. Resende: Greedy Randomized Adaptive Search Procedures 3.6.6: Manuel Laguna: Scatter Search 3.6.7: Fred Glover and Manuel Laguna: Tabu Search 3.6.8: E. H. L. Aarts and H. M. M. Ten Eikelder: Simulated Annealing 3.6.9: Pierre Hansen and Nenad Mladenovi'c: Variable Neighborhood Search 4: Yinyu Ye: Quadratic Programming 5: Nonlinear Programming 5.1: Gianni Di Pillo and Laura Palagi: Introduction 5.2: Gianni Di Pillo and Laura Palagi: Unconstrained Nonlinear Programming 5.3: Constrained Nonlinear Programming }a Gianni Di Pillo and Laura Palagi 5.4: Manlio Gaudioso: Nonsmooth Optimization 6: Christodoulos A. Floudas: Deterministic Global Optimizatio and Its Applications 7: Philippe Mahey: Decomposition Methods for Mathematical Programming 8: Network Optimization 8.1: Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Introduction 8.2: Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Maximum Flow Problem 8.3: Edith Cohen: Shortest-Path Algorithms 8.4: S. Thomas McCormick: Minimum-Cost Single-Commodity Flow 8.5: Pierre Chardaire and Abdel Lisser: Minimum-Cost Multicommodity Flow 8.6: Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Minimum Spanning Tree Problem 9: Integer Programming 9.1: Nelson Maculan: Introduction 9.2: Nelson Maculan: Linear 0-1 Programming 9.3: Yves Crama and peter L. Hammer: Psedo-Boolean Optimization 9.4: Christodoulos A. Floudas: Mixed-Integer Nonlinear Optimization 9.5: Monique Guignard: Lagrangian Relaxation 9.6: Arne Lookketangen: Heuristics for 0-1 Mixed-Integer Programming 10: Theodore B. Trafalis and Suat Kasap: Artificial Neural Networks in Optimization and Applications 11: John R. Birge: Stochastic Programming 12: Hoang Tuy: Hierarchical Optimization 13: Michael C. Ferris and Christian Kanzow: Complementarity and Related Problems 14: Jose H. Dula: Data Envelopment Analysis 15: Yair Censor and Stavros A. Zenios: Parallel Algorithms in Optimization 16: Sanguthevar Rajasekaran: Randomization in Discrete Optimization: Annealing Algorithms Part Two: Applications 17: Problem Types 17.1: Chung-Yee Lee and Michael Pinedo: Optimization and Heuristics of Scheduling 17.2: John E. Beasley, Abilio Lucena, and Marcus Poggi de Aragao: The Vehicle Routing Problem 17.3: Ding-Zhu Du: Network Designs: Approximations for Steiner Minimum Trees 17.4: Edward G. Coffman, Jr., Janos Csirik, and Gerhard J. Woeginger: Approximate Solutions to Bin Packing Problems 17.5: Rainer E. Burkard: The Traveling Salesmand Problem 17.6: Dukwon Kim and Boghos D. Sivazlian: Inventory Management 17.7: Zvi Drezner: Location 17.8: Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah: Algorithms for the Satisfiability (SAT) Problem 17.9: Eranda Cela: Assignment Problems 18: Application Areas 18.1: Warren B. Powell: Transportation and Logistics 18.2: Gang Yu and Benjamin G. Thengvall: Airline Optimization 18.3: Alexandra M. Newman, Linda K. Nozick, and Candace Arai Yano: Optimization in the Rail Industry 18.4: Andres Weintraub Pohorille and John Hof: Forstry Industry 18.5: Stephen C. Graves: Manufacturi