- Format
- Häftad (Paperback)
- Språk
- Engelska
- Antal sidor
- 442
- Utgivningsdatum
- 2002-12-01
- Upplaga
- 2
- Förlag
- OUP Oxford
- Illustratör/Fotograf
- Numerous Figures
- Illustrationer
- figs.
- Dimensioner
- 245 x 190 x 22 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- ,
- ISBN
- 9780198507178
- 960 g
Du kanske gillar
-
Humble Pi
Matt Parker
HäftadSapiens
Yuval Noah Harari
HäftadDiscrete Mathematics
599- Skickas inom 10-15 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Solid State Physics av J R Hook, H E Hall (häftad).
Köp båda 2 för 1058 krKundrecensioner
Det finns 3 recensioner av Discrete Mathematics. Har du också läst boken? Sätt ditt betyg »Fler böcker av Norman L Biggs
-
Graph Theory 1736-1936
Norman L Biggs
-
Interaction Models
Norman L Biggs
-
Permutation Groups and Combinatorial Structures
Norman L Biggs, A T White
Recensioner i media
The Mathematical Gazette This is a new edition of a successful textbook ... this revision is particularly welcome ... The text is written in a fluent but rigorous style and should appeal to sixthformers and undergraduates who are alienated by more formal presentations. There are plenty of approachable exercises, ranging from easy riders to establish technique to more challenging problems which introduce new ideas, and a bonus is that all the answers are available on a companion web-site. I
can thoroughly recommend this text.
EMS A well known definition says that a textbook is a book such that everybody thinks he can write a better one. Biggs' Discrete Mathematics is an exception - not only for its wide range of topics and its clear organization but notably for its excellent style of explanation.
Zentralblatt MATH ... the ideal choice for introductory courses to discrete mathematicians.Innehållsförteckning
THE LANGUAGE OF MATHEMATICS; 1. Statements and proofs; 2. Set notation; 3. The logical framework; 4. Natural numbers; 5. Functions; 6. How to count; 7. Integers; 8. Divisibility and prime numbers; 9. Fractions and real numbers; TECHNIQUES; 10. Principles of counting; 11. Subsets and designs; 12. Partition, classification and distribution; 13. Modular arithmetic; ALGORITHMS AND GRAPHS; 14. Algorithms and their efficiency; 15. Graphs; 16. Trees, sorting and searching; 17. Bipartite graphs and matching problems; 18. Digraphs, networks and flows; 19. Recursive techniques; ALGEBRAIC METHODS; 20. Groups; 21. Groups of permutations; 22. Rings, fields and polynomials; 23. Finite fields and some applications; 24. Error-correcting codes; 25. Generating functions; 26. Partitions of a positive integer; 27. Symmetry and counting