The Foundations of Mathematics (häftad)
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
416
Utgivningsdatum
2015-03-12
Upplaga
2
Förlag
OUP Oxford
Medarbetare
Tall, David
Illustratör/Fotograf
113 b, w line drawings
Illustrationer
113 b/w line drawings
Dimensioner
203 x 133 x 19 mm
Vikt
498 g
Antal komponenter
1
Komponenter
,
ISBN
9780198706434
The Foundations of Mathematics (häftad)

The Foundations of Mathematics

Häftad Engelska, 2015-03-12
189
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
The transition from school to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. This book bridges the divide.
Visa hela texten

Passar bra ihop

  1. The Foundations of Mathematics
  2. +
  3. Nicolas-Louis De La Caille, Astronomer and Geodesist

De som köpt den här boken har ofta också köpt Nicolas-Louis De La Caille, Astronomer and Geod... av Ian Stewart Glass (inbunden).

Köp båda 2 för 818 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Recensioner i media

N. W. Schillow, CHOICE The writing is both rigorous and thorough, and the authors use compact presentations to support their explanations and proofs. Highly recommended.


Bloggat om The Foundations of Mathematics

Övrig information

David Tall is Emeritus Professor of Mathematical Thinking at the University of Warwick. Internationally known for his contributions to mathematics education, his most recent book is How Humans Learn to Think Mathematically (2013).

Innehållsförteckning

I: THE INTUITIVE BACKGROUND ; 1. Mathematical Thinking ; 2. Number Systems ; II: THE BEGINNINGS OF FORMALISATION ; 3. Sets ; 4. Relations ; 5. Functions ; III: THE DEVELOPMENT OF AXIOMATIC SYSTEMS ; 8. Natural Numbers and Proof by Induction ; 9. Real Numbers ; 10. Real Numbers as a Complete Ordered Field ; 11. Complex Numbers and Beyond ; IV: USING AXIOMATIC SYSTEMS ; 12. Axiomatic Structures and Structure Theorems ; 13. Permutations and Groups ; 14. Infinite Cardinal Numbers ; 15. Infinitesimals ; V: STRENGTHENING THE FOUNDATIONS ; 16. Axioms for Set Theory