Reinforcement Learning (e-bok)
Fler böcker inom
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Antal sidor
344
Utgivningsdatum
1998-02-26
Förlag
The MIT Press
ISBN
9780262257053
Reinforcement Learning (e-bok)

Reinforcement Learning (e-bok)

An Introduction

E-bok (PDF - DRM), Engelska, 1998-02-26
1179
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Finns även som
Visa alla 3 format & utgåvor
Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Neural Networks for Control

    W Thomas Miller Iii, Richard S Sutton, Paul J Werbos

    Neural Networks for Control highlights key issues in learning control and identifies research directions that could lead to practical solutions for control problems in critical application domains. It addresses general issues of neural network bas...

  • Handbook of Learning and Approximate Dynamic Programming

    Jennie Si, Andrew G Barto, Warren B Powell, Don Wunsch

    * A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code* Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book* Includes ideas, directions, and recent ...