Computational Macroeconomics for the Open Economy (e-bok)
Fler böcker inom
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Antal sidor
256
Utgivningsdatum
2008-10-03
Förlag
The MIT Press
ISBN
9780262278386
Computational Macroeconomics for the Open Economy (e-bok)

Computational Macroeconomics for the Open Economy E-bok

E-bok (PDF - DRM), Engelska, 2008-10-03
819
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Finns även som
Visa alla 2 format & utgåvor
How to use nonlinear dynamic models in policy analysis.Policymakers need quantitative as well as qualitative answers to pressing policy questions. Because of advances in computational methods, quantitative estimates are now derived from coherent nonlinear dynamic macroeconomic models embodying measures of risk and calibrated to capture specific characteristics of real-world situations. This text shows how such models can be made accessible and operational for confronting policy issues. The book starts with a simple setting based on market-clearing price flexibility. It gradually incorporates departures from the simple competitive framework in the form of price and wage stickiness, taxes, rigidities in investment, financial frictions, and habit persistence in consumption. Most chapters end with computational exercises; the Matlab code for the base model can be found in the appendix. As the models evolve, readers are encouraged to modify the codes from the first simple model to more complex extensions. Computational Macroeconomics for the Open Economy can be used by graduate students in economics and finance as well as policy-oriented researchers.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Neural Networks in Finance

    Paul D McNelis

    This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecas...