Data Science (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
280
Utgivningsdatum
2018-04-13
Förlag
MIT Press
Illustratör/Fotograf
18 b&w illus
Illustrationer
18 b&w illus.; 36 Illustrations, unspecified
Dimensioner
177 x 127 x 19 mm
Vikt
244 g
Antal komponenter
1
Komponenter
,
ISBN
9780262535434
Data Science (häftad)

Data Science

Häftad Engelska, 2018-04-13
153
Skickas inom 2-5 vardagar.
Fri frakt inom Sverige för privatpersoner.
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Visa hela texten

Passar bra ihop

  1. Data Science
  2. +
  3. Numerical Python

De som köpt den här boken har ofta också köpt Numerical Python av Robert Johansson (häftad).

Köp båda 2 för 542 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Data Science

Övrig information

John D. Kelleher is Academic Leader of the Information, Communication, and Entertainment Research Institute at the Technological University Dublin. He is the coauthor of Data Science (also in the MIT Press Essential Knowledge series) and Fundamentals of Machine Learning for Predictive Data Analytics (MIT Press).