Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
522
Utgivningsdatum
2004-08-01
Upplaga
2005 ed.
Förlag
Kluwer Academic/Plenum Publishers
Medarbetare
Eaton, S. S. (ed.), Eaton, G. R. (ed.), Berliner, L. J. (ed.)
Illustrationer
25 Tables, black and white; 261 Illustrations, black and white; XXIV, 522 p. 261 illus.
Volymtitel
Pt. A
Dimensioner
234 x 158 x 31 mm
Vikt
272 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9780306485060
Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology (inbunden)

Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology

Inbunden Engelska, 2004-08-01
3729
Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Biomedical EPR - Part A focuses on applications of EPR spectroscopy in the areas of free radicals, metals, medicine, and physiology. The book celebrates the 70th birthday of Prof. James S. Hyde, Medical College of Wisconsin, and his contributions to this field. Chapters are written to provide introductory material for new-comers to the field which lead into up-to-date reviews that provide perspective on the wide range of questions that can be addressed by EPR. Key Features: Free Radicals in Medicine Radicals in vivo and in Model Systems, and their Study by Spin Trapping In vivo EPR, including Oximetry and Imaging Time Domain EPR at Radio Frequencies EPR of Copper Complexes: Motion and Frequency Dependence Time Domain EPR and Electron Spin Echo Envelope Modulation
Visa hela texten

Passar bra ihop

  1. Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology
  2. +
  3. Ethics in Engineering

De som köpt den här boken har ofta också köpt Ethics in Engineering av Thomas Taro Lennerfors (häftad).

Köp båda 2 för 4033 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Biomedical EPR - Part A: Free Radicals, M...

Övrig information

Prof. Sandra S. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. Her research interests include distance measurements in proteins, EPR of metal ions in biological systems, electron spin relaxation times, and EPR instrumentation. The Eatons co-organize an annual EPR Symposium in Denver. Prof. Gareth R. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. His research interests include EPR instrumentation, distance measurements in proteins, EPR of metal ions in biological systems, and electron spin relaxation times. Dr. Lawrence J. Berliner is currently Professor and Chair of the Department of Chemistry and Biochemistry at the University of Denver after retiring from Ohio State University, where he spent a 32-year career in the area of biological magnetic resonance (EPR and NMR). He is the Series Editor for Biological Magnetic Resonance, which he launched in 1979.

Innehållsförteckning

Section I. Instrumentation and Methodology Chapter 1 Saturation Recovery EPR; Sandra S. Eaton and Gareth R. Eaton 1. Motivation 2. Brief History 3. Information Content of Saturation Recovery Curves 4. Practical Aspects of Experimental Methodology 5. Applications 6. Prognosis 7. References Chapter 2 Loop-Gap Resonators; George A. Rinard and Gareth R. Eaton 1. Introduction 2. History 3. Why should one use loop-gap resonators? 4. Basics 5. Topologies of loop gap resonators 6. Coupling to Resonators 7. Design equations 8. Magnetic Field Modulation 9. LGR for Time Domain EPR 10. Selection of the Q of a LGR 11. Measuring B1 in the LGR 12. Variable Temperature 13. Mechanical Considerations 14. Commercial Resonators 15. Applications of Lumped-Circuit Resonators 16. Further information 17. References Chapter 3 EPR Interfaced To Rapid Mixing; Charles P. Scholes 1. Introduction 2. The Loop Gap Resonator Based Stopped-Flow System 3. Dielectric Resonator-based Stopped-Flow EPR 4. Applications of Stopped-Flow and Flow EPR to Naturally Occurring Transient Radicals 5. Future Developments and Applications of Flow and Stopped-Flow EPR 6. References Chapter 4 Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules; Devkumar Mustafi and Marvin W. Makinen 1. Introduction 2. ENDOR Assignment of Molecular Structure and Conformation with VO2+ and Nitroxyl Spin-Labels 3. ENDOR Characterization of Structured Solvent in Small Molecule Complexes and in Proteins 4. Future Perspectives and Concluding Remarks 5. References Chapter 5 Solution-ENDOR of Some Biologically Interesting Radical Ions; Fabian Gerson and Georg Gescheidt 1. Solution ENDOR Spectroscopy 2. Quinones 3. Porphyrinoids 4. References Chapter 6 Electron-Electron Double Resonance; Lowell D. Kispert 1. Introduction 2. Instrumental Techniques 3. Dynamics of Biomolecules in Liquid Crystals, Glassy Solids, Polymers and Crystals 4. Practical Aspects of Measurements 5. References Chapter 7 Digital Detection by Time-Locked Sampling in EPR; James S. Hyde, Theodore G. Camenisch, Joseph J. Ratke, Robert A. Strangeway, Wojciech Froncisz 1. Introduction 2. Time Locking and Superheterodyne Detection - EPR Instrument Design Background 3. Time-Locked Subsampling Detection for CW EPR 4. Pulse Saturation Recovery Using Time-Locked Subsampling 5. Selected Engineering Considerations 6. Conclusion 7. References Chapter 8 Measurement of Distances Between Electron Spins Using Pulsed EPR; Sandra S. Eaton and Gareth R. Eaton 1. Introduction 2. Fundamental Principles of Interaction between Electron Spins 3. Distance between Two Slowly Relaxing Centers 4. Distance between a Slowly Relaxing Center and a Rapidly-Relaxing Center 5. Some Practical Considerations 6. Recent Examples for Distances between Two Slowly-Relaxing Radicals 7. Recent Examples for Distances between a Rapidly-Relaxing and a Slowly-Relaxing Spin 8. Prognosis 9. References Section II. Motion, Proteins, and Membranes Chapter 9 ESR and Molecular Dynamics; Jack H. Freed 1. Motional Narrowing and Organic Radicals 2. Double Resonance and Molecular Dynamics 3. Slow Motional ESR and Molecular Dynamics 4. High Field ESR and Molecular Dynamics 5. Spin-Echoes and