Finite-Dimensional Vector Spaces (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
202
Utgivningsdatum
1993-08-01
Upplaga
1st ed. 1958. Corr. 2nd printing 1993
Förlag
Springer-Verlag New York Inc.
Illustrationer
VIII, 202 p.
Dimensioner
240 x 160 x 10 mm
Vikt
440 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9780387900933
Finite-Dimensional Vector Spaces (inbunden)

Finite-Dimensional Vector Spaces

Inbunden Engelska, 1993-08-01
524
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 7 format & utgåvor
From the reviews: "The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity....The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." --ZENTRALBLATT FUER MATHEMATIK
Visa hela texten

Passar bra ihop

  1. Finite-Dimensional Vector Spaces
  2. +
  3. I Want to be a Mathematician

De som köpt den här boken har ofta också köpt I Want to be a Mathematician av P R Halmos (inbunden).

Köp båda 2 för 1753 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av P R Halmos

Recensioner i media

"This is a classic but still useful introduction to modern linear algebra. It is primarily about linear transformations ... . It's also extremely well-written and logical, with short and elegant proofs. ... The exercises are very good, and are a mixture of proof questions and concrete examples. The book ends with a few applications to analysis ... and a brief summary of what is needed to extend this theory to Hilbert spaces." (Allen Stenger, MAA Reviews, maa.org, May, 2016) "The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." Zentralblatt fur Mathematik

Innehållsförteckning

I. Spaces.- 1. Fields.- 2. Vector spaces.- 3. Examples.- 4. Comments.- 5. Linear dependence.- 6. Linear combinations.- 7. Bases.- 8. Dimension.- 9. Isomorphism.- 10. Subspaces.- 11. Calculus of subspaces.- 12. Dimension of a subspace.- 13. Dual spaces.- 14. Brackets.- 15. Dual bases.- 16. Reflexivity.- 17. Annihilators.- 18. Direct sums.- 19. Dimension of a direct sum.- 20. Dual of a direct sum.- 21. Quotient spaces.- 22. Dimension of a quotient space.- 23. Bilinear forms.- 24. Tensor products.- 25. Product bases.- 26. Permutations.- 27. Cycles.- 28. Parity.- 29. Multilinear forms.- 30. Alternating forms.- 31. Alternating forms of maximal degree.- II. Transformations.- 32. Linear transformations.- 33. Transformations as vectors.- 34. Products.- 35. Polynomials.- 36. Inverses.- 37. Matrices.- 38. Matrices of transformations.- 39. Invariance.- 40. Reducibility.- 41. Projections.- 42. Combinations of projections.- 43. Projections and invariance.- 44. Adjoints.- 45. Adjoints of projections.- 46. Change of basis.- 47. Similarity.- 48. Quotient transformations.- 49. Range and null-space.- 50. Rank and nullity.- 51. Transformations of rank one.- 52. Tensor products of transformations.- 53. Determinants.- 54. Proper values.- 55. Multiplicity.- 56. Triangular form.- 57. Nilpotence.- 58. Jordan form.- III. Orthogonality.- 59. Inner products.- 60. Complex inner products.- 61. Inner product spaces.- 62. Orthogonality.- 63. Completeness.- 64. Schwarz's inequality.- 65. Complete orthonormal sets.- 66. Projection theorem.- 67. Linear functionals.- 68. Parentheses versus brackets.- 69. Natural isomorphisms.- 70. Self-adjoint transformations.- 71. Polarization.- 72. Positive transformations.- 73. Isometries.- 74. Change of orthonormal basis.- 75. Perpendicular projections.- 76. Combinations of perpendicular projections.- 77. Complexification.- 78. Characterization of spectra.- 79. Spectral theorem.- 80. Normal transformations.- 81. Orthogonal transformations.- 82. Functions of transformations.- 83. Polar decomposition.- 84. Commutativity.- 85. Self-adjoint transformations of rank one.- IV. Analysis.- 86. Convergence of vectors.- 87. Norm.- 88. Expressions for the norm.- 89. Bounds of a self-adjoint transformation.- 90. Minimax principle.- 91. Convergence of linear transformations.- 92. Ergodic theorem.- 93. Power series.- Appendix. Hilbert Space.- Recommended Reading.- Index of Terms.- Index of Symbols.