- Format
- Inbunden (Hardback)
- Språk
- Engelska
- Antal sidor
- 206
- Utgivningsdatum
- 1994-09-01
- Upplaga
- 1994 ed.
- Förlag
- Springer-Verlag New York Inc.
- Medarbetare
- Jaenich, Klaus
- Illustratör/Fotograf
- 58 schwarz-weiße Abbildungen
- Illustrationer
- X, 206 p.
- Dimensioner
- 243 x 162 x 16 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Hardback
- ISBN
- 9780387941288
- 468 g
Du kanske gillar
-
Live Beautiful
Athena Calderone
InbundenSapiens
Yuval Noah Harari
HäftadLinear Algebra
av Klaus Janich729- Skickas inom 7-10 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Dopamine Nation av Dr Anna Lembke (häftad).
Köp båda 2 för 873 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av Klaus Janich
-
Vektoranalysis
Klaus Janich
-
Vector Analysis
Klaus Janich
-
Topologie
Klaus Janich
-
Differenzierbare G-Mannigfaltigkeiten
Klaus Janich
Innehållsförteckning
1. Sets and Maps.- 1.1 Sets.- 1.2 Maps.- 1.3 Test.- 1.4 Remarks on the Literature.- 1.5 Exercises.- 2. Vector Spaces.- 2.1 Real Vector Spaces.- 2.2 Complex Numbers and Complex Vector Spaces.- 2.3 Vector Subspaces.- 2.4 Test.- 2.5 Fields.- 2.6 What Are Vectors?.- 2.7 Complex Numbers 400 Years Ago.- 2.8 Remarks on the Literature.- 2.9 Exercises.- 3. Dimension.- 3.1 Linear Independence.- 3.2 The Concept of Dimension.- 3.3 Test.- 3.4 Proof of the Basis Extension Theorem and the Exchange Lemma.- 3.5 The Vector Product.- 3.6 The "Steinitz Exchange Theorem".- 3.7 Exercises.- 4. Linear Maps.- 4.1 Linear Maps.- 4.2 Matrices.- 4.3 Test.- 4.4 Quotient Spaces.- 4.5 Rotations and Reflections in the Plane.- 4.6 Historical Aside.- 4.7 Exercises.- 5. Matrix Calculus.- 5.1 Multiplication.- 5.2 The Rank of a Matrix.- 5.3 Elementary Transformations.- 5.4 Test.- 5.5 How Does One Invert a Matrix?.- 5.6 Rotations and Reflections (continued).- 5.7 Historical Aside.- 5.8 Exercises.- 6. Determinants.- 6.1 Determinants.- 6.2 Determination of Determinants.- 6.3 The Determinant of the Transposed Matrix.- 6.4 Determinantal Formula for the Inverse Matrix.- 6.5 Determinants and Matrix Products.- 6.6 Test.- 6.7 Determinant of an Endomorphism.- 6.8 The Leibniz Formula.- 6.9 Historical Aside.- 6.10 Exercises.- 7. Systems of Linear Equations.- 7.1 Systems of Linear Equations.- 7.2 Cramer's Rule.- 7.3 Gaussian Elimination.- 7.4 Test.- 7.5 More on Systems of Linear Equations.- 7.6 Captured on Camera!.- 7.7 Historical Aside.- 7.8 Remarks on the Literature.- 7.9 Exercises.- 8. Euclidean Vector Spaces.- 8.1 Inner Products.- 8.2 Orthogonal Vectors.- 8.3 Orthogonal Maps.- 8.4 Groups.- 8.5 Test.- 8.6 Remarks on the Literature.- 8.7 Exercises.- 9. Eigenvalues.- 9.1 Eigenvalues and Eigenvectors.- 9.2 The Characteristic Polynomial.- 9.3 Test.- 9.4 Polynomials.- 9.5 Exercises.- 10. The Principal Axes Transformation.- 10.1 Self-Adjoint Endomorphisms.- 10.2 Symmetric Matrices.- 10.3 The Principal Axes Transformation for Self-Adjoint Endomorphisms.- 10.4 Test.- 10.5 Exercises.- 11. Classification of Matrices.- 11.1 What Is Meant by "Classification"?.- 11.2 The Rank Theorem.- 11.3 The Jordan Normal Form.- 11.4 More on the Principal Axes Transformation.- 11.5 The Sylvester Inertia Theorem.- 11.6 Test.- 11.7 Exercises.- 12. Answers to the Tests.- References.