Monte Carlo and Quasi-Monte Carlo Methods 1996 (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
450
Utgivningsdatum
1997-11-01
Upplaga
and ed.
Förlag
Springer-Verlag New York Inc.
Medarbetare
Bickel, P. (red.)
Illustrationer
26 Illustrations, black and white; XII, 450 p. 26 illus.
Dimensioner
234 x 156 x 24 mm
Vikt
649 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9780387983356
Monte Carlo and Quasi-Monte Carlo Methods 1996 (häftad)

Monte Carlo and Quasi-Monte Carlo Methods 1996

Proceedings of a Conference at the University of Salzburg, Austria, July 9-12, 1996

Häftad Engelska, 1997-11-01
1059
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.
Visa hela texten

Passar bra ihop

  1. Monte Carlo and Quasi-Monte Carlo Methods 1996
  2. +
  3. Monte-Carlo and Quasi-Monte Carlo Methods 1998

De som köpt den här boken har ofta också köpt Monte-Carlo and Quasi-Monte Carlo Methods 1998 av Harald Niederreiter, Jerome Spanier (häftad).

Köp båda 2 för 2288 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Invited Papers.- A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing.- Monte Carlo Methods: A Powerful Tool of Statistical Physics.- Binary Search Trees Based on Weyl and Lehmer Sequences.- A Survey of Quadratic and Inversive Congruential Pseudorandom Numbers.- A Look at Multilevel Splitting.- On the Distribution of Digital Sequences.- Random Number Generators and Empirical Tests.- The Algebraic-Geometry Approach to Low-Discrepancy Sequences.- Contributed Papers.- A Monte Carlo Estimator Based on a State Space Decomposition Methodology for Flow Network Reliability.- Monte Carlo and Quasi-Monte Carlo Algorithms for a Linear Integro-Differential Equation.- A Numerical Approach for Determination of Sources in Reactive Transport Equations.- Monte Carlo Algorithms for Calculating Eigenvalues.- Construction of Digital Nets from BCH-Codes.- Discrepancy Lower Bounds for Special Quasi-Random Sequences.- Computing Discrepancies Related to Spaces of Smooth Periodic Functions.- On Correlation Analysis of Pseudorandom Numbers.- Quasi-Monte Carlo, Discrepancies and Error Estimates.- The Quasi-Random Walk.- Comparison of Independent and Stratified Sampling Schemes in Problems of Global Optimization.- The Rate of Convergence to a Stable Law for the Random Sum of IID Random Variables.- Some Bounds on the Figure of Merit of a Lattice Rule.- Quasi-Monte Carlo Integration of Digitally Smooth Functions by Digital Nets.- Weak Limits for the Diaphony.- Quasi-Monte Carlo Simulation of Random Walks in Finance.- Error Estimation for Quasi-Monte Carlo Methods.- Shift-Nets: A New Class of Binary Digital (tms)-Nets.- General Sequential Sampling Techniques for Monte Carlo Simulations: Part I - Matrix Problems.- Quasi-Monte Carlo Methods for Integral Equations.- Quadratic Congruential Generators with Odd Composite Modulus.- A New Permutation Choice in Halton Sequences.- Optimal U-Type Designs.