Mass Spectrometry (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
400
Utgivningsdatum
2009-04-23
Upplaga
1
Förlag
John Wiley & Sons Inc
Medarbetare
Ekman, Rolf (red.)
Illustrationer
Illustrations some col.
Dimensioner
236 x 155 x 23 mm
Vikt
681 g
Antal komponenter
1
ISBN
9780471713951

Mass Spectrometry

Instrumentation, Interpretation, and Applications

Inbunden,  Engelska, 2009-04-23
1944
  • Specialorder (osäker tillgång). Skickas från oss inom 11-20 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 1 format & utgåvor
With contributions from noted experts from Europe and North America, Mass Spectrometry Instrumentation, Interpretation, and Applications serves as a forum to introduce students to the whole world of mass spectrometry and to the many different perspectives that each scientific field brings to its use. The book emphasizes the use of this important analytical technique in many different fields, including applications for organic and inorganic chemistry, forensic science, biotechnology, and many other areas. After describing the history of mass spectrometry, the book moves on to discuss instrumentation, theory, and basic applications.
Visa hela texten

Passar bra ihop

  1. Mass Spectrometry
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 2233 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Recensioner i media

"It was my great pleasure to read this clearly written and well organized mass spectrometry (MS) book. In view, it can serve as an excellent textbook for both undergraduate and graduate students who major in analytical, biological, forensic, or environmental chemistry, as well as a valuable resource to those researchers who are interested in the MS-based chemical analysis." (J Am Soc Mass Spectrom, 2011) "The book is particularly designed for graduate students, with the assumption being made that most of them will not become mass spectrometry specialists. Instead, it focuses on how they can use the technique to support and advance research across a broad range of disciplines." (Chemistry Journals, 11 April 2011)

Övrig information

Rolf Ekman, PhD, is a Professor of Neurochemistry at University of Gothenburg in Sweden. JERZY SILBERRING, PhD, is the Head of the Department of Neurobiochemistry in the Department of Chemistry and the former deputy head of the Regional Laboratory of Physicochemical Analyses at Jagiellonian University in Krakow, Poland. Ann M. Westman-Brinkmalm, PhD, is a Junior Research Fellow at the Sahlgrenska Academy at University of Gothenburg in Sweden. Agnieszka Kraj, PhD, is an Assistant Professor in the Department of Neurobiochemistry, Faculty of Chemistry at Jagiellonian University in Krakow, Poland.

Innehållsförteckning

Foreword xiii Contributors xv Part I Instrumentation 1 1 Definitions and Explanations 3 Ann Westman-Brinkmalm and Gunnar Brinkmalm References 13 2 A Mass Spectrometers Building Blocks 15 Ann Westman-Brinkmalm and Gunnar Brinkmalm 2.1. Ion Sources 15 2.1.1. Gas Discharge 16 2.1.2. Thermal Ionization 16 2.1.3. Spark Source 19 2.1.4. Glow Discharge 20 2.1.5. Inductively Coupled Plasma 21 2.1.6. Electron Ionization 23 2.1.7. Chemical Ionization 24 2.1.8. Atmospheric Pressure Chemical Ionization 24 2.1.9. Photoionization 25 2.1.10. Multiphoton Ionization 25 2.1.11. Atmospheric Pressure Photoionization 26 2.1.12. Field Ionization 26 2.1.13. Field Desorption 27 2.1.14. Thermospray Ionization 27 2.1.15. Electrospray Ionization 27 2.1.16. Desorption Electrospray Ionization 29 2.1.17. Direct Analysis in Real Time 30 2.1.18. Secondary Ion Mass Spectrometry 31 2.1.19. Fast Atom Bombardment 33 2.1.20. Plasma Desorption 34 2.1.21. Laser Desorption/Ionization 34 2.1.22. Matrix-Assisted Laser Desorption/Ionization 35 2.1.23. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization 37 2.2. Mass Analyzers 38 2.2.1. Time-of-Flight 40 2.2.2. Magnetic/Electric Sector 45 2.2.3. Quadrupole Mass Filter 49 2.2.4. Quadrupole Ion Trap 51 2.2.5. Orbitrap 55 2.2.6. Fourier Transform Ion Cyclotron Resonance 58 2.2.7. Accelerator Mass Spectrometry 62 2.3. Detectors 65 2.3.1. Photoplate Detector 65 2.3.2. Faraday Detector 67 2.3.3. Electron Multipliers 67 2.3.4. Focal Plane Detector 69 2.3.5. Scintillation Detector 69 2.3.6. Cryogenic Detector 70 2.3.7. Solid-State Detector 70 2.3.8. Image Current Detection 70 References 71 3 Tandem Mass Spectrometry 89 Ann Westman-Brinkmalm and Gunnar Brinkmalm 3.1. Tandem MS Analyzer Combinations 91 3.1.1. Tandem-in-Space 91 3.1.2. Tandem-in-Time 95 3.1.3. Other Tandem MS Configurations 97 3.2. Ion Activation Methods 97 3.2.1. In-Source Decay 97 3.2.2. Post-Source Decay 98 3.2.3. Collision Induced/Activated Dissociation 98 3.2.4. Photodissociation 100 3.2.5. Blackbody Infrared Radiative Dissociation 100 3.2.6. Electron Capture Dissociation 101 3.2.7. Electron Transfer Dissociation 101 3.2.8. Surface-Induced Dissociation 101 References 102 4 Separation Methods 105 Ann Westman-Brinkmalm, Jerzy Silberring, and Gunnar Brinkmalm 4.1. Chromatography 106 4.1.1. Gas Chromatography 106 4.1.2. Liquid Chromatography 107 4.1.3. Supercritical Fluid Chromatography 109 4.2. Electric-Field Driven Separations 110 4.2.1. Ion Mobility 110 4.2.2. Electrophoresis 111 References 113 Part II Interpretation 117 5 Introduction to Mass Spectra Interpretation: Organic Chemistry 119 Albert T. Lebedev 5.1. Basic Concepts 119 5.2. Inlet Systems 121 5.2.1. Direct Inlet 121 5.2.2. Chromatography-Mass Spectrometry 121 5.3. Physical Bases of Mass Spectrometry 128 5.3.1. Electron Ionization 129 5.3.2. Basics of Fragmentation Processes in Mass Spectrometry 130 5.3.3. Metastable Ions 135 5.4. Theoretical Rules and Approaches to Interpret Mass Spectra 137 5.4.1. Stability of Charged and Neutral Particles 137 5.4.2. The Concept of Charge and Unpaired Electron Localization 148 5.4.3. Charge Remote Fragmentation 151 5.5. Practical Approaches to Interpret Mass Spectra 152 5.5.1. Molecular Ion 152 5.5.2. High Resolution Mass Spectrometry 155 5.5.3. Determination of the Elemental Composition of Ions on the Basis of Isotopic Peaks 158 5.5.4. The Nitrogen Rule 164 5.5.5. Establishing the 13 C Isotope Content in Natural Samples 166 5.5.6. Calculation of the Isotopic Purity of Samples 166 5.5.7. Fragment Ions 168 5.5.8. Mass Spectral Libraries 173 5.5.9. Additional Mass Spectral Information 173 5.5.10. Fragmentation Scheme 175 References 177 6 Sequencing of Peptides and Proteins 179 Marek Noga, Tomasz Dylag, and Jerzy Silberring 6.1. Basic Concepts 179 6.2.