Lie Equations, Vol. I (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
309
Utgivningsdatum
1972-10-01
Förlag
Princeton University Press
Originalspråk
English
Medarbetare
Spencer, Donald C.
Illustrationer
1, black & white illustrations
Volymtitel
v. 1 Lie Equations, Vol. I General Theory
Dimensioner
234 x 154 x 19 mm
Vikt
454 g
Antal komponenter
1
Komponenter
v.
ISBN
9780691081113
Lie Equations, Vol. I (häftad)

Lie Equations, Vol. I

General Theory. (AM-73)

Häftad Engelska, 1972-10-01
819
Skickas inom 7-10 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume.
Visa hela texten

Passar bra ihop

  1. Lie Equations, Vol. I
  2. +
  3. Functionals of Finite Riemann Surfaces

De som köpt den här boken har ofta också köpt Functionals of Finite Riemann Surfaces av Menahem Schiffer, Donald Clayton Spencer (inbunden).

Köp båda 2 för 3068 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

*Frontmatter, pg. i*Foreword, pg. v*Glossary of Symbols, pg. ix*Table of Contents, pg. xiii*Introduction, pg. 1*A. Integrability of Lie Structures, pg. 7*B. Deformation Theory of Lie Structures, pg. 29*Chapter I. Jet Sheaves and Differential Equations, pg. 49*Chapter II. Linear Lie Equations, pg. 88*Chapter III. Derivations and Brackets, pg. 104*Chapter IV. Non-Linear Complexes, pg. 136*Chapter V. Derivations of Jet Forms, pg. 212*Appendix. Lie Groupoids, pg. 257*References, pg. 278*Index, pg. 286