Principles and Applications
De som köpt den här boken har ofta också köpt Felder's Elementary Principles of Chemical Proc... av Richard M Felder, Ronald W Rousseau, Lisa G Bullard (häftad).
Köp båda 2 för 1632 krErfolgreiches Bauen setzt neben dem Wissen von Werkstoffeigenschaften und Korrosions- und Brandverhalten fundierte Kenntnisse in der Statik und Festigkeitslehre, aber auch eine grndliche Ausbildung in den wesentlichen Konstruktionsprinzipien diese...
»Ich lege hier für den Fall meines Todes das Bekenntnis ab, dass ich die deutsche Nation wegen ihrer überschwänglichen Dummheit verachte und mich schäme, ihr anzugehören.« Arthur Schopenhauer Dies ist wahrscheinlich eines der ungewöhnlichsten Büch...
"This is a fresh approach which will be of some interest to process chemists and engineers who are not only interested in synthesis but also in kinetics and rates of processes." * Organic Process Research and Development, 2010, 14, 298 * "This book provides a feast of fascinating chemistry involving wide-ranging stereochemical studies.""This is a book that people will love to read. The topics are well chosen and interesting and the writing is succinct and accurate. It could be used as a textbook for an advanced undergraduate or graduate special topics course and will serve as a valuable source of stimulating supplementary material for many courses." * Journal of the American Chemical Society * It is presented in a way which gives a uniquely bright outlook and lays down a contemporary, concise, coherent and entertaining romp through dynamic stereochemistry.....is well produced, very clear and readable, with a particularly comfortable format.I would recommend the work for advanced students - masters and doctoral stage researchers - as well as the broad-minded professional. * Chemistry World, April 2008, 75-76 (David Amabilino) *
Professor Christian Wolf graduated from the University of Hamburg, Germany in 1993 where he received his Ph.D. in 1995 under the auspices of Professor Wilfried A. Knig. After working as a postdoctoral Feodor-Lynen Fellow with Professor William H. Pirkle at the University of Illinois in Urbana, Illinois he took an R&D position at SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania in 1997. In 2000, he accepted a position as Assistant Professor in the Chemistry Department at Georgetown University in Washington, DC where he was promoted to Associate Professor with tenure in 2006. He has been a visiting scholar at the University of Reading, England in 1991 and at the University of Aix-Marseille, France in 1995. Professor Wolf's research interests comprise stereodynamics of chiral compounds, asymmetric synthesis, stereoselective sensing, chiral recognition, transition metal-catalyzed cross-coupling reactions, development of antimalarial drugs, and chiral chromatography.
CHAPTER 1: Introduction: CHAPTER 2: Principles of Chirality and Dynamic Stereochemistry; 2.1. Stereochemistry of chiral compounds; 2.2. Dynamic stereochemistry of cyclic and acyclic chiral compounds; CHAPTER 3: Racemization, Enantiomerization and Diastereomerization; 3.1. Classification of isomerization reactions of chiral compounds; 3.1.1. Racemization; 3.1.2. Enantiomerization; 3.1.3. Diastereomerization; 3.1.4. Epimerization and mutarotation; 3.2. Stereomutations of chiral compounds: Mechanisms and energy barriers; 3.2.1. Alkanes; 3.2.2. Alkenes and annulenes; 3.2.3. Allenes and cumulenes; 3.2.4. Helicenes and phenanthrenes; 3.2.5. Alkyl halides, nitriles and nitro compounds; 3.2.6. Amines; 3.2.7. Aldehydes, ketones and imines; 3.2.8. Alcohols, ethers, acetals, and ketals; 3.2.9. Carboxylic acids and derivatives; 3.2.10. Amino acids; 3.2.11. Silicon, phosphorus and sulfur compounds; 3.2.12. Organometallic compounds; 3.2.13. Supramolecular structures; 3.3. Atropisomerization; 3.3.1. Biaryls, triaryls and diarylacetylenes; 3.3.2. Nonbiaryl atropisomers; 3.3.3. Cyclophanes; 3.3.4. Atropisomeric xenobiotics; 3.4. Pharmacological and pharmacokinetic significance of racemization; CHAPTER 4: Analytical Methods; 4.1. Chiroptical methods; 4.2. Variable-temperature NMR spectroscopy and proton/deuterium exchange measurements; 4.3. Dynamic chromatography; 4.3.1. Dynamic high performance liquid chromatography; 4.3.2. Dynamic gas chromatography; 4.3.3. Dynamic supercritical fluid chromatography and electrokinetic chromatography; 4.4. Chromatographic and electrophoretic stopped-flow analysis; 4.5. Comparison of analytical methods; CHAPTER 5: Principles of Asymmetric Synthesis; 5.1. Classification of asymmetric reactions; 5.2. Kinetic and thermodynamic control; 5.3. Asymmetric induction; 5.3.1. Control of molecular orientation and conformation; 5.3.2. Single and double stereodifferentiation; CHAPTER 6: Asymmetric Synthesis with Stereodynamic Compounds: Introduction, Conversion and Transfer of Chirality; 6.1. Asymmetric synthesis with chiral organolithium reagents; 6.1.1. -Alkoxy- and -amino-substituted organolithium compounds; 6.1.2. Sulfur-, phosphorus- and halogen-stabilized organolithium compounds; 6.2. Atroposelective synthesis of axially chiral biaryls; 6.2.1. Intramolecular atroposelective biaryl synthesis; 6.2.2. Intermolecular atroposelective biaryl synthesis; 6.2.3. Atroposelective ring construction; 6.2.4. Desymmetrization of conformationally stable prochiral biaryls; 6.2.5. Asymmetric transformation of stereodynamic biaryls; 6.3. Nonbiaryl atropisomers; 6.4. Chirality transfer and interconversion of chiral elements; 6.4.1. Chirality transfer in SN2' and SE2' reactions; 6.4.2. Rearrangements; 6.4.2.1. 1,2-Chirality transfer; 6.4.2.2. 1,3-Chirality transfer; 6.4.2.3. 1,4-Chirality transfer; 6.4.2.4. 1,5-Chirality transfer; 6.4.3. Intermolecular chirality transfer; 6.4.4. Transfer of stereogenicity between carbon and heteroatoms; 6.4.5. Conversion of central chirality to other chiral elements; 6.4.6. Conversion of axial chirality to other chiral elements; 6.4.7. Conversion of planar chirality to other chiral elements; 6.5. Self-regeneration of stereogenicity and chiral relays; 6.5.1. Stereocontrolled substitution at a chiral center; 6.5.2. Self-regeneration of stereocenters; 6.5.3. Self-regeneration of chiral elements with stereolabile intermediates; 6.5.4. Chiral relays; 6.6. Asymmetric catalysis with stereolabile ligands; 6.6.1. Stereodynamic achiral ligands; 6.6.2. Stereolabile axially chiral ligands; 6.7. Stereoselective synthesis in the solid state; CHAPTER 7: Asymmetric Resolution and Transformation of Chiral Compounds under Thermodynamic and Kinetic Control; 7.1. Scope and principles of asymmetric resolution and transformation; 7.2. Asymmetric transformation of the first kind; 7.3. Asymmetric transformation of the second kind; 7.3.1. Cr