- Format
- Häftad (Paperback)
- Språk
- Engelska
- Antal sidor
- 247
- Utgivningsdatum
- 1987-01-01
- Förlag
- Society for Industrial and Applied Mathematics
- Medarbetare
- Rozier, Ron (red.)/Rozier, Ron (red.)
- Dimensioner
- 247 x 171 x 19 mm
- Vikt
- Antal komponenter
- 1
- ISSN
- 0163-9439
- ISBN
- 9780898712957
- 430 g
Du kanske gillar
-
Kundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av Harald Niederreiter
-
Algebraic Geometry in Coding Theory and Cryptography
Harald Niederreiter, Chaoping Xing
-
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Harald Niederreiter, Peter J Shiue
-
Monte Carlo and Quasi-Monte Carlo Methods 1996
Harald Niederreiter, Peter Hellekalek, Gerhard Larcher, Peter Zinterhof
-
Finite Fields
Rudolf Lidl, Harald Niederreiter
Recensioner i media
'The most important sections of this book deal with the fundamental concepts of nets, (t, s)-sequences, and lattice rules which are of central importance in new advances in quasi-Monte Carlo methods ... It gives an excellent survey on the recent developments in uniform pseudorandom number generation and quasi-Monte Carlo methods. Some of these developments described here have never before presented in a book ...Fundamental concepts and methods were explained in detail using instructive examples (e.g. numerical integration in higher dimensions, optimization ....). Hence, this publication should also be accessible for nonspecialists. For the scientific computing community it is surely a valuable contribution.' U. Lotz, Biometric Journal
Innehållsförteckning
Preface; 1. Monte Carlo methods and Quasi-Monte Carlo methods; 2. Quasi-Monte Carlo methods for numerical integration; 3. Low-discrepancy point sets and sequences; 4. Nets and (t,s)-sequences; 5. Lattice rules for numerical integration; 6. Quasi- Monte Carlo methods for optimization; 7. Random numbers and pseudorandom numbers; 8. Nonlinear congruential pseudorandom numbers; 9. Shift-Register pseudorandom numbers; 10. Pseudorandom vector generation; Appendix A. Finite fields and linear recurring sequences; Appendix B. Continued fractions; Bibliography; Index.