Modern Condensed Matter Physics (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
714
Utgivningsdatum
2019-02-28
Förlag
Cambridge University Press
Medarbetare
Yang, Kun
Illustratör/Fotograf
247 b, w illus 2 tables
Illustrationer
2 Tables, black and white; 3 Halftones, black and white; 244 Line drawings, black and white
Dimensioner
252 x 190 x 32 mm
Vikt
1685 g
Antal komponenter
1
ISBN
9781107137394

Modern Condensed Matter Physics

Inbunden,  Engelska, 2019-02-28
881
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 2 format & utgåvor
Modern Condensed Matter Physics brings together the most important advances in the field of recent decades. It provides instructors teaching graduate-level condensed matter courses with a comprehensive and in-depth textbook that will prepare graduate students for research or further study as well as reading more advanced and specialized books and research literature in the field. This textbook covers the basics of crystalline solids as well as analogous optical lattices and photonic crystals, while discussing cutting-edge topics such as disordered systems, mesoscopic systems, many-body systems, quantum magnetism, Bose-Einstein condensates, quantum entanglement, and superconducting quantum bits. Students are provided with the appropriate mathematical background to understand the topological concepts that have been permeating the field, together with numerous physical examples ranging from the fractional quantum Hall effect to topological insulators, the toric code, and majorana fermions. Exercises, commentary boxes, and appendices afford guidance and feedback for beginners and experts alike.
Visa hela texten

Passar bra ihop

  1. Modern Condensed Matter Physics
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 1170 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Steven M Girvin

  • The Quantum Hall Effect

    Richard E Prange, Steven M Girvin

    After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, in...

  • Quantum Hall Effect

    Richard E Prange, K V Klitzing, M E Cage, Steven M Girvin, A M Chang

    After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, in...

Recensioner i media

'Finally, an excellent introductory graduate text for the modern era of quantum condensed matter physics! Girvin and Yang deftly describe the transformative advances in the field, highlighting the close connection between theory and experiment. Highly recommended to all, from physics students to researchers seeking to reset their foundations.' Subir Sachdev, Harvard University, Massachusetts

'Thisbook is a milestone for condensed matter physics that covers the field from Bragg scattering to superconductivity and topology of the electronic band structure with clarity and depth. It is an inspiring text and a reference for anyone in the field.' Richard Martin, University of Illinois

Övrig information

Steven M. Girvin received his B.S. in 1971 from Bates College and his Ph.D. in 1977 from Princeton University. He joined the Yale University faculty in 2001, where he is Eugene Higgins Professor of Physics and Professor of Applied Physics. From 2007 to 2017 he served as Deputy Provost for Research. His research interests focus on theoretical condensed matter physics, quantum optics and quantum computation; he is co-developer of the circuit QED paradigm for quantum computation. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, American Academy of Arts and Sciences; Foreign Member of the Royal Swedish Academy of Sciences, Member US National Academy of Sciences; Oliver E. Buckley Prize of the American Physical Society (2007); Honorary doctorate, Chalmers University of Technology (2017); Conde Award for Teaching Excellence (2003). Kun Yang received his B.S. in 1989 from Fudan University and his Ph.D. in 1994 fromIndiana University. He joined the faculty of Florida State University in 1999 where he is now Mckenzie Professor of Physics. His research focuses on many-particle physics in condensed matter and trapped cold atom systems. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, Alfred Sloan Research Fellowship (1999), Outstanding Young Researcher Award, Overseas Chinese Physics Association (2003).

Innehållsförteckning

Preface; Acknowledgements; 1. Overview of condensed matter physics; 2. Spatial structure; 3 Lattices and symmetries; 4. Neutron scattering; 5. Dynamics of lattice vibrations; 6. Quantum theory of harmonic crystals; 7. Electronic structure of crystals; 8. Semiclassical transport theory; 9. Semiconductors; 10. Non-local transport in mesoscopic systems; 11. Anderson localization; 12. Integer quantum Hall effect; 13. Topology and Berry phase; 14. Topological insulators and semimetals; 15. Interacting electrons; 16. Fractional quantum Hall effect; 17. Magnetism; 18. Bose-Einstein condensation and superuidity; 19. Superconductivity: basic phenomena and phenomenological theories; 20. Microscopic theory of superconductivity; Appendix A. Linear response theory; Appendix B. The Poisson summation formula; Appendix C. Tunneling and scanning tunneling microscopy; Appendix D. Brief primer on topology; Appendix E. Scattering matrices, unitarity and reciprocity; Appendix F. Quantum entanglement in condensed matter physics; Appendix G. Linear reponse and noise in electrical circuits; Appendix H. Functional differentiation; Appendix I. Low-energy effective hamiltonians; Appendix J. Introduction to second quantization; Bibliography; Index.