Machine Learning (e-bok)
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Utgivningsdatum
2022-03-31
Förlag
Cambridge University Press
ISBN
9781108911979
Machine Learning (e-bok)

Machine Learning E-bok

A First Course for Engineers and Scientists

E-bok (PDF - DRM), Engelska, 2022-03-31
677
Ladda ned och läs i en e-boksläsare. Tips på appar
Finns även som
Visa alla 2 format & utgåvor
This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna