Principles of Engineering Thermodynamics (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
888
Utgivningsdatum
2015-01-16
Upplaga
8th Edition SI Version
Förlag
John Wiley & Sons Inc
Volymtitel
SI Version
Dimensioner
276 x 216 x 28 mm
Vikt
1756 g
ISBN
9781118960882
Principles of Engineering Thermodynamics (häftad)

Principles of Engineering Thermodynamics

SI Version

(3 röster)  |  Läs 1 recension
Häftad Engelska, 2015-01-16
509
Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.
*This text continues its tradition of setting the standard for teaching students how to be effective problem solvers. * Now in its eighth edition, this market-leading text emphasizes the authors collective teaching expertise as well as the signature methodologies that have taught entire generations of engineers worldwide. * Integrated throughout the text are real-world applications that emphasize the relevance of thermodynamics principles to some of the most critical problems and issues of today, including a wealth of coverage of topics related to energy and the environment, biomedical/bioengineering, and emerging technologies.
Visa hela texten

Passar bra ihop

  1. Principles of Engineering Thermodynamics
  2. +
  3. Introduction to Thermal Systems Engineering

De som köpt den här boken har ofta också köpt Introduction to Thermal Systems Engineering av Michael J Moran, Howard N Shapiro, Bruce R Munson, David P Dewitt (inbunden).

Köp båda 2 för 1298 kr

Kundrecensioner

Det finns 1 recension av Principles of Engineering Thermodynamics. Har du också läst boken? Sätt ditt betyg »
  1. Saknar facit
    My, 17 april 2018

    Bra bok, enkel att hitta i och inte allt för komplicerad engelska. Saknar dock facit till övningsuppgifterna, vilket är ett stort minus.

Visa alla 1 recensioner

Bloggat om Principles of Engineering Thermodynamics

Innehållsförteckning

1 Getting Started: Introductory Concepts and Definitions 1 1.1 Using Thermodynamics 2 1.2 Defining Systems 2 1.3 Describing Systems and Their Behavior 6 1.4 Measuring Mass, Length, Time, and Force 9 1.5 Specific Volume 11 1.6 Pressure 12 1.7 Temperature 16 1.8 Engineering Design and Analysis 20 1.9 Methodology for Solving Thermodynamics Problems 22 2 Energy and the First Law of Thermodynamics 30 2.1 Reviewing Mechanical Concepts of Energy 31 2.2 Broadening Our Understanding of Work 35 2.3 Broadening Our Understanding of Energy 46 2.4 Energy Transfer by Heat 47 2.5 Energy Accounting: Energy Balance for Closed Systems 51 2.6 Energy Analysis of Cycles 63 2.7 Energy Storage 67 3 Evaluating Properties 78 3.1 Getting Started 79 Evaluating Properties: General Considerations 80 3.2 p T Relation 80 3.3 Studying Phase Change 84 3.4 Retrieving Thermodynamic Properties 87 3.5 Evaluating Pressure, Specific Volume, and Temperature 87 3.6 Evaluating Specific Internal Energy and Enthalpy 93 3.7 Evaluating Properties Using Computer Software 96 3.8 Applying the Energy Balance Using Property Tables and Software 97 3.9 Introducing Specific Heats c and cp 104 3.10 Evaluating Properties of Liquids and Solids 105 3.11 Generalized Compressibility Chart 109 Evaluating Properties Using the Ideal Gas Model 114 3.12 Introducing the Ideal Gas Model 114 3.13 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 117 3.14 Applying the Energy Balance Using Ideal Gas Tables, Constant Specific Heats, and Software 120 3.15 Polytropic Process Relations 128 4 Control Volume Analysis Using Energy 142 4.1 Conservation of Mass for a Control Volume 143 4.2 Forms of the Mass Rate Balance 145 4.3 Applications of the Mass Rate Balance 147 4.4 Conservation of Energy for a Control Volume 151 4.5 Analyzing Control Volumes at Steady State 154 4.6 Nozzles and Diffusers 156 4.7 Turbines 159 4.8 Compressors and Pumps 163 4.9 Heat Exchangers 168 4.10 Throttling Devices 173 4.11 System Integration 175 4.12 Transient Analysis 178 5 The Second Law of Thermodynamics 202 5.1 Introducing the Second Law 203 5.2 Statements of the Second Law 206 5.3 Irreversible and Reversible Processes 209 5.4 Interpreting the Kelvin Planck Statement 214 5.5 Applying the Second Law to Thermodynamic Cycles 215 5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs 216 5.7 Second Law Aspects of Refrigeration and Heat Pump Cycles Interacting with Two Reservoirs 218 5.8 The Kelvin and International Temperature Scales 220 5.9 Maximum Performance Measures for Cycles Operating between Two Reservoirs 223 5.10 Carnot Cycle 229 5.11 Clausius Inequality 231 6 Using Entropy 243 6.1 Entropy A System Property 244 6.2 Retrieving Entropy Data 245 6.3 Introducing the T dS Equations 248 6.4 Entropy Change of an Incompressible Substance 250 6.5 Entropy Change of an Ideal Gas 251 6.6 Entropy Change in Internally Reversible Processes of Closed Systems 254 6.7 Entropy Balance for Closed Systems 257 6.8 Directionality of Processes 264 6.9 Entropy Rate Balance for Control Volumes 269 6.10 Rate Balances for Control Volumes at Steady State 270 6.11 Isentropic Processes 277 6.12 Isentropic Efficiencies of Turbines, Nozzles, Compressors, and Pumps 284 6.13 Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes 291 7 Exergy Analysis 309 7.2 Conceptualizing Exergy 311 7.3 Exergy of a System 312 7.4 Closed System Exergy Balance 318 7.5 Exergy Rate Balance for Control Volumes at Steady State 327 7.6 Exergetic (Second Law) Efficiency 339 7.7 Thermoeconomics 345 8 Vapor Power Systems 367 Introducing Power Generation 368 Considering Vapor Power Systems 372 8.1 Introducing Vapor Power Plants 372 8.2 The Rankine Cycle 375 8.3