Machine Learning For Dummies (häftad)
Fler böcker inom
Häftad (Paperback / softback)
Antal sidor
John Wiley & Sons Inc
black & white illustrations
black & white illustrations
234 x 184 x 25 mm
589 g
Antal komponenter
Machine Learning For Dummies (häftad)

Machine Learning For Dummies

(1 röst)  |  Läs 1 recension
Häftad Engelska, 2016-05-20
Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Your no-nonsense guide to making sense of machine learning Machine learning can be a mind-boggling concept for the masses, but those who are in the trenches of computer programming know just how invaluable it is. Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks. Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data or anything in between this guide makes it easier to understand and implement machine learning seamlessly. * Grasp how day-to-day activities are powered by machine learning * Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis * Learn to code in R using R Studio * Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!
Visa hela texten

Passar bra ihop

  1. Machine Learning For Dummies
  2. +
  3. C++ All-in-One For Dummies

De som köpt den här boken har ofta också köpt C++ All-in-One For Dummies av John Paul Mueller, Jeff Cogswell (häftad).

Köp båda 2 för 508 kr


Det finns 1 recension av Machine Learning For Dummies. Har du också läst boken? Sätt ditt betyg »
  1. För svår statistik
    Gert, 21 augusti 2018

    Boken är skriven av två författare. De heter John Paul Mueller och Luca Massaron. Muller beskriver de olika programmeringsspråken som används och Massaron algoritmer och den omfattande statistik som används vid maskininlärning.
    Programmeringsspråken hade jag inga som helst problem med, men däremot har jag haft väldigt svårt att ta till mig de statistiska metoderna som används.
    Boken heter Machine Learning for dummies. I min värld är beteckningen "for dummies" en fingervisning om att m... Läs hela recensionen

Visa alla 1 recensioner

Recensioner i media

"Comprehensive and not just for dummies." (MagPi, January 2017)

Bloggat om Machine Learning For Dummies

Övrig information

John Paul Mueller is a prolific freelance author and technical editor. He's covered everything from networking and home security to database management and heads-down programming. Luca Massaron is a data scientist who specializes in organizing and interpreting big data, turning it into smart data with data mining and machine learning techniques.


Introduction 1 Part 1: Introducing How Machines Learn 7 CHAPTER 1: Getting the Real Story about AI 9 CHAPTER 2: Learning in the Age of Big Data 23 CHAPTER 3: Having a Glance at the Future 35 Part 2: Preparing Your Learning Tools 45 CHAPTER 4: Installing an R Distribution 47 CHAPTER 5: Coding in R Using RStudio 63 CHAPTER 6: Installing a Python Distribution 89 CHAPTER 7: Coding in Python Using Anaconda 109 CHAPTER 8: Exploring Other Machine Learning Tools 137 Part 3: Getting Started with the Math Basics 145 CHAPTER 9: Demystifying the Math Behind Machine Learning 147 CHAPTER 10: Descending the Right Curve 167 CHAPTER 11: Validating Machine Learning 181 CHAPTER 12: Starting with Simple Learners 199 Part 4: Learning from Smart and Big Data 217 CHAPTER 13: Preprocessing Data 219 CHAPTER 14: Leveraging Similarity 237 CHAPTER 15: Working with Linear Models the Easy Way 257 CHAPTER 16: Hitting Complexity with Neural Networks 279 CHAPTER 17: Going a Step beyond Using Support Vector Machines 297 CHAPTER 18: Resorting to Ensembles of Learners 315 Part 5: Applying Learning to Real Problems 331 CHAPTER 19: Classifying Images 333 CHAPTER 20: Scoring Opinions and Sentiments 349 CHAPTER 21: Recommending Products and Movies 369 Part 6: The Part of Tens 383 CHAPTER 22: Ten Machine Learning Packages to Master 385 CHAPTER 23: Ten Ways to Improve Your Machine Learning Models 391 INDEX 399