- Format
- Inbunden (Hardback)
- Språk
- Engelska
- Antal sidor
- 896
- Utgivningsdatum
- 2020-03-30
- Förlag
- Wiley-Blackwell
- Medarbetare
- Lee
- Dimensioner
- 10 x 10 x 10 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- HC gerader Rücken kaschiert
- ISBN
- 9781119602293
- 454 g
Du kanske gillar
-
Applied Radar EW
Anders Eneroth
InbundenAdobe Premiere Pro Classroom in a Book (2020 release)
Maxim Jago
Mixed media productApplications of Modern Heuristic Optimization Methods in Power and Energy Systems
1559Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt The Geology and Lineament Analysis of the Baja ... av Vadim Galkine P Geo, Ricardo A Valls P Geo (häftad).
Köp båda 2 för 2148 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Power Plants and Power Systems Control 2003
Kwang Y Lee
-
Modern Heuristic Optimization Techniques
Kwang Y Lee, Mohamed A El-Sharkawi
-
Intelligent Network Integration of Distributed Renewable Generation
Nadarajah Mithulananthan, Duong Quoc Hung, Kwang Y Lee
-
Intelligent Network Integration of Distributed Renewable Generation
Nadarajah Mithulananthan, Duong Quoc Hung, Kwang Y Lee
Övrig information
KWANG Y. LEE, PhD, is a Professor and Chair of Electrical and Computer Engineering at Baylor University. He is active in the Intelligent Systems Subcommittee and Station Control Subcommittee of the IEEE Power and Energy Society. He served as Editor of IEEE Transactions on Energy Conversion and Associate Editor of IEEE Transactions on Neural Networks and IFAC Journal on Control Engineering Practice. ZITA A. VALE, PhD, is a Full Professor in the Electrical Engineering Department at the School of Engineering of the Polytechnic of Porto and Director of GECAD Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development. She has published over 800 works, including more than 100 papers in international scientific journals.
Innehållsförteckning
Preface xv Contributors xvii List of Figures xxi List of Tables xxxiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Evolutionary Computation: A Successful Branch of CI 3 1.2.1 Genetic Algorithm 6 1.2.2 Non-dominated Sorting Genetic Algorithm II 8 1.2.3 Evolution Strategies and Evolutionary Programming 8 1.2.4 Simulated Annealing 9 1.2.5 Particle Swarm Optimization 10 1.2.6 Quantum Particle Swarm Optimization 10 1.2.7 Multi-objective Particle Swarm Optimization 11 1.2.8 Particle Swarm Optimization Variants 12 1.2.9 Artificial Bee Colony 13 1.2.10 Tabu Search 14 References 15 Chapter 2 Overview Of Applications In Power And Energy Systems 21 2.1 Applications to Power Systems 21 2.1.1 Unit Commitment 23 2.1.2 Economic Dispatch 24 2.1.3 Forecasting in Power Systems 25 2.1.4 Other Applications in Power Systems 27 2.2 Smart Grid Application Competition Series 28 2.2.1 Problem Description 29 2.2.2 Best Algorithms and Ranks 30 2.2.3 Further Information and How to Download 32 References 32 Chapter 3 Power System Planning And Operation 39 3.1 Introduction 39 3.2 Unit Commitment 40 3.2.1 Introduction 40 3.2.2 Problem Formulation 40 3.2.3 Advancement in UCP Formulations and Models 42 3.2.4 Solution Methodologies, State-of-the-Art, History, and Evolution 46 3.2.5 Conclusions 56 3.3 Economic Dispatch Based on Genetic Algorithms and Particle Swarm Optimization 56 3.3.1 Introduction 56 3.3.2 Fundamentals of Genetic Algorithms and Particle Swarm Optimization 58 3.3.3 Economic Dispatch Problem 60 3.3.4 GA Implementation to ED 63 3.3.5 PSO Implementation to ED 71 3.3.6 Numerical Example 79 3.3.7 Conclusions 87 3.4 Differential Evolution in Active Power Multi-Objective Optimal Dispatch 87 3.4.1 Introduction 87 3.4.2 Differential Evolution for Multi-Objective Optimization 88 3.4.3 Multi-Objective Model of Active Power Optimization for Wind Power Integrated Systems 97 3.4.4 Case Studies 100 3.4.5 Analyses of Dispatch Plan 105 3.4.6 Conclusions 106 3.5 Hydrothermal Coordination 106 3.5.1 Introduction 106 3.5.2 Hydrothermal Coordination Formulation 107 3.5.3 Problem Decomposition 110 3.5.4 Case Studies 111 3.5.5 Conclusions 114 3.6 Meta-Heuristic Method for Gms Based on Genetic Algorithm 115 3.6.1 History 115 3.6.2 Meta-heuristic Search Method 116 3.6.3 Flexible GMS 119 3.6.4 User-Friendly GMS System 131 3.6.5 Conclusion 141 3.7 Load Flow 143 3.7.1 Introduction 143 3.7.2 Load Flow Analysis in Electrical Power Systems 144 3.7.3 Particle Swarm Optimization and Mutation Operation 148 3.7.4 Load Flow Computation via Particle Swarm Optimization with Mutation Operation 150 3.7.5 Numerical Results 153 3.7.6 Conclusions 160 3.8 Artificial Bee Colony Algorithm for Solving Optimal Power Flow 161 3.8.1 Optimization in Power System Operation 162 3.8.2 The Optimal Power Flow Problem 162 3.8.3 Artificial Bee Colony 166 3.8.4 ABC for the OPF Problem 168 3.8.5 Case Studies 170 3.8.6 Conclusions 176 3.9 OPF Test Bed and Performance Evaluation of Modern Heuristic Optimization 176 3.9.1 Introduction 176 3.9.2 Problem Definition 177 3.9.3 OPF Test Systems 178 3.9.4 Differential Evolutionary Particle Swarm Optimization: DEEPSO 183 3.9.5 Enhanced Version of Mean-Variance Mapping Optimization Algorithm: MVMO-PHM 187 3.9.6 Evaluation Results 193 3.9.7 Conclusions 196 3.10 Transmission System Expansion Planning 197 3.10.1 Introduction 197 3.10.2 Transmission System Expansion Planning Models 198 3.10.3 Mathematical Modeling 199 3.10.4 Challenges 201 3.10.5 Application of Meta-heuristics to TEP 202 3.10.6 Conclusions 210 3.11 Conclusion 210 References 210 Chapter 4 Power System And Power Plant Control 227 4.1 Introduction 227 4.2 Load Frequency Control - Optimization and Stability 228 4.2.1 Introduction 228 4.2.2 Load Frequency Control 229 4.2.3 Components of Active Power Control