Polyurethanes (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
512
Utgivningsdatum
2021-03-04
Upplaga
2 ed
Förlag
John Wiley & Sons Inc
Illustrationer
Color illustrations
Dimensioner
229 x 160 x 28 mm
Vikt
908 g
Antal komponenter
1
Komponenter
1314:Standard Color 6 x 9 in or 229 x 152 mm Case Laminate on White w/Gloss Lam
ISBN
9781119669418

Polyurethanes

Science, Technology, Markets, and Trends

Inbunden,  Engelska, 2021-03-04
2150
  • Skickas från oss inom 5-8 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 5 format & utgåvor
This book, cohesively written by an expert author with supreme breadth and depth of perspective on polyurethanes, provides a comprehensive overview of all aspects of the science and technology on one of the most commonly produced plastics. Covers the applications, manufacture, and markets for polyurethanes, and discusses analytical methods, reaction mechanisms, morphology, and synthetic routes Provides an up-to-date view of the current markets and trend analysis based on patent activity and updates chapters to include new research Includes two new chapters on PU recycling and PU hybrids, covering the opportunities and challenges in both
Visa hela texten

Passar bra ihop

  1. Polyurethanes
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 2439 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Övrig information

MARK F. SONNENSCHEIN, PHD, is research fellow with The Dow Chemical Company. He is inventor of Dow's LESATM (Low Surface Energy Adhesive), Voranol VorativTM polyurethane polyol, HermesTM thermoplastic polyurethane elastomer, RenuvaTM seed oil derived polyol, Voranol 223-060LMTM polyol, and numerous other technologies.

Innehållsförteckning

Preface Acknowledgments Chapter 1 Introduction Chapter 2 Polyurethane Building Blocks 2.1 Polyols 2.11 Polyether polyols 2.111 Building blocks 2.112 Polymerization of alkoxides to polyethers 2.12 Polyester polyols 2.121 Polyester polyol building blocks 2.122 Preparation of polyester polyols 2.123 Aliphatic polyester polyols 2.124 Aromatic Polyester Polyols 2. 13 Other Polyols 2.131 Polycarbonate Polyols 2.1311. Preparation of polycarbonate polyols 2. 132 Polyacrylate polyols 2.1321 Preparation of acrylic polyols 2.14. Filled polyols 2.141 Copolymer polyols 2.142 PHD Polyols 2.143 PIPA polyols 2.15 Seed-oil derived polyols 2.151 Preparation of seed oil derived polyols 2.1511 Epoxidation and ring opening 2.1512 Ozonolysis 2.1513 Hydroformylation and reduction 2.1514 Metathesis 2.16 Prepolymers 2.2 Isocyanates 2.21 TDI 2.211 Conventional Production of TDI 2.212 Non-phosgene routes to TDI 2.2121 Thermolysis of Carbamic acid, N,N'-(4-methyl-1,3-phenylene)bis-, C,C'-dimethyl ester made from the reaction of toluene diamine with methyl carbonate 2.2122 Thermolysis of Carbamic acid, N,N'-(4-methyl-1,3-phenylene)bis-, C,C'-dimethyl ester made from the reductive carbonylation of dinitrotoluene. 2.2123 Isocyanates by thermal decomposition of acyl azides The Curtius rearrangement 2.22 Diphenylmethane diisocyanates (MDI) 2.221 Production of MDI 2.23 Aliphatic Isocyanates 2.231. Production of Aliphatic isocyanates 2.2311 hexamethylene diisocyanate (HDI) 2.2312 Isophorone diisocyanate(IPDI) 2.2313 4,4- diisocyanatodicyclohexylmethane (H12MDI) 2.232 Use of aliphatic isocyanates 2.3 Chain extenders Chapter 3 Introduction to Polyurethane Chemistry 3.1 Introduction 3.2 Mechanism and Catalysis of Urethane Formation 3.3 Reactions of Isocyanates with Active Hydrogen Compounds 3.31 Urea Formation 3.32 Allophanate Formation 3.33 Formation of Biurets 3.34 Formation of Uretdione (isocyanate dimer) 3.35 Formation of Carbodiimide 3.36 Formation of uretonimine 3.37 Formation of amides Chapter 4 Theoretical Concepts and Techniques in Polyurethane Science 4.1 Formation of Polyurethane Structure 4.2 Properties of Polyurethanes 4.21 Models and Calculations for Polymer Modulus 4.22 Models for Elastomer Stress Strain Properties 4.221 Factors that affect Polyurethane Stress-Strain Behavior 4.222 Calculating Foam Properties 4.23 The Polyurethane Glass Transition Temperature Chapter 5 Analytical Characterization of Polyurethanes 5.1 Analysis of reagents for making polyurethanes 5.11 Analysis of Polyols 5.111 Hydroxyl number 5.112 CPR 5.12 Analysis of Isocyanates 5.121 Analysis of pMDI composition 5.2 Instrumental Analysis of Polyurethanes 5.21 Microscopy 5.211 Optical microscopy 5.212 Scanning electron microscopy 5.213 Transmission electron microscopy (TEM) 5.214 Atomic Force Microscopy (AFM) 5.22 Infra-red Spectrometry 5.23 X-ray Analyses 5.231 Wide Angle X-ray Scattering (WAXS) 5.232 Small Angle X-ray scattering (SAXS) 5.3 Mechanical Analysis 5.31 Tensile, tear and elongation testing 5.32 Dynamic mechanical analysis 5.4 Nuclear Magnetic Spectroscopy (NMR) 5.5 Foam Screening: FoamatR Chapter 6 Polyurethane Flexible Foams: Chemistry and Fabrication 6.1 Making Polyurethane Foams 6.11 Slabstock Foams 6.12 Molded Foams 6.2 Foam Processes 6.21 Surfactancy and Catalysis 6.211 Catalysis 6.212 Surfactancy 6.3 Flexible Foam Formulation and Structure Property Relationships 6.31 Screening tests 6.32 Foam Formulation and Structure Property Relationships Chapter 7 Polyurethane Flexible Foams: Markets, Applications, Markets and Trends 7.1 Applications 7.11 Furniture 7.12 Mattresses and Bedding 7.13 Transportation 7.14 The Molded Foam Market 7.2 Trends in Molded Foam Technology and Markets Chapter 8 Polyurethane Rigid Foams: Marke