Concepts, Technology, and Architecture
De som köpt den här boken har ofta också köpt Physics Handbook - for Science and Engineering av Carl Nordling, Jonny Österman (inbunden).
Köp båda 2 för 2089 krBALAMURUGAN BALUSAMY, PHD, is a Professor with the School of Computing Science and Engineering at Galgotias University, Greater Noida, India NANDHINI ABIRAMI. R is an IT Consultant and Research Scholar at VIT University in Vellore. SEIFEDINE KADRY, PhD, is a Professor of Data Science at the Faculty of Applied Computing and Technology at Noroff University College, Kristiansand, Norway. AMIR H. GANDOMI, PHD, is a Professor of Data Science at the Faculty of Engineering & Information Technology, University of Technology Sydney, Australia.
Acknowledgments xi About the Author xii 1 Introduction to the World of Big Data 1 1.1 Understanding Big Data 1 1.2 Evolution of Big Data 2 1.3 Failure of Traditional Database in Handling Big Data 3 1.4 3 Vs of Big Data 4 1.5 Sources of Big Data 7 1.6 Different Types of Data 8 1.7 Big Data Infrastructure 11 1.8 Big Data Life Cycle 12 1.9 Big Data Technology 18 1.10 Big Data Applications 21 1.11 Big Data Use Cases 21 Chapter 1 Refresher 24 2 Big Data Storage Concepts 31 2.1 Cluster Computing 32 2.2 Distribution Models 37 2.3 Distributed File System 43 2.4 Relational and Non-Relational Databases 43 2.5 Scaling Up and Scaling Out Storage 47 Chapter 2 Refresher 48 3 NoSQL Database 53 3.1 Introduction to NoSQL 53 3.2 Why NoSQL 54 3.3 CAP Theorem 54 3.4 ACID 56 3.5 BASE 56 3.6 Schemaless Databases 57 3.7 NoSQL (Not Only SQL) 57 3.8 Migrating from RDBMS to NoSQL 76 Chapter 3 Refresher 77 4 Processing, Management Concepts, and Cloud Computing 83 Part I: Big Data Processing and Management Concepts 83 4.1 Data Processing 83 4.2 Shared Everything Architecture 85 4.3 Shared-Nothing Architecture 86 4.4 Batch Processing 88 4.5 Real-Time Data Processing 88 4.6 Parallel Computing 89 4.7 Distributed Computing 90 4.8 Big Data Virtualization 90 Part II: Managing and Processing Big Data in Cloud Computing 93 4.9 Introduction 93 4.10 Cloud Computing Types 94 4.11 Cloud Services 95 4.12 Cloud Storage 96 4.13 Cloud Architecture 101 Chapter 4 Refresher 103 5 Driving Big Data with Hadoop Tools and Technologies 111 5.1 Apache Hadoop 111 5.2 Hadoop Storage 114 5.3 Hadoop Computation 119 5.4 Hadoop 2.0 129 5.5 HBASE 138 5.6 Apache Cassandra 141 5.7 SQOOP 141 5.8 Flume 143 5.9 Apache Avro 144 5.10 Apache Pig 145 5.11 Apache Mahout 146 5.12 Apache Oozie 146 5.13 Apache Hive 149 5.14 Hive Architecture 151 5.15 Hadoop Distributions 152 Chapter 5 Refresher 153 6 Big Data Analytics 161 6.1 Terminology of Big Data Analytics 161 6.2 Big Data Analytics 162 6.3 Data Analytics Life Cycle 166 6.4 Big Data Analytics Techniques 170 6.5 Semantic Analysis 175 6.6 Visual analysis 178 6.7 Big Data Business Intelligence 178 6.8 Big Data Real-Time Analytics Processing 180 6.9 Enterprise Data Warehouse 181 Chapter 6 Refresher 182 7 Big Data Analytics with Machine Learning 187 7.1 Introduction to Machine Learning 187 7.2 Machine Learning Use Cases 188 7.3 Types of Machine Learning 189 Chapter 7 Refresher 196 8 Mining Data Streams and Frequent Itemset 201 8.1 Itemset Mining 201 8.2 Association Rules 206 8.3 Frequent Itemset Generation 210 8.4 Itemset Mining Algorithms 211 8.5 Maximal and Closed Frequent Itemset 229 8.6 Mining Maximal Frequent Itemsets: the GenMax Algorithm 233 8.7 Mining Closed Frequent Itemsets: the Charm Algorithm 236 8.8 CHARM Algorithm Implementation 236 8.9 Data Mining Methods 239 8.10 Prediction 240 8.11 Important Terms Used in Bayesian Network 241 8.12 Density Based Clustering Algorithm 249 8.13 DBSCAN 249 8.14 Kernel Density Estimation 250 8.15 Mining Data Streams 254 8.16 Time Series Forecasting 255 9 Cluster Analysis 259 9.1 Clustering 259 9.2 Distance Measurement Techniques 261 9.3 Hierarchical Clustering 263 9.4 Analysis of Protein Patterns in the Human Cancer-Associated Liver 266 9.5 Recognition Using Biometrics of Hands 267 9.6 Expectation Maximization Clustering Algorithm 274 9.7 Representative-Based Clustering 277 9.8 Methods of Determining the Number of Clusters 277 9.9 Optimization Algorithm 284 9.10 Choosing the Number of Clusters 288 9.11 Bayesian Analysis of Mixtures 290 9.12 Fuzzy Clustering 290 9.13 Fuzzy C-Means Clustering 291 10 Big Data Visualization 293 10.1 Big Data Visualization 293 10.2 Conventional Data Visualization Techniques 294 10.3 Tableau 297 10.4 Bar Chart in Tableau 309 10.5 Line Chart 310