Artificial Intelligence: A Modern Approach, Global Edition (häftad)
Fler böcker inom
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
1152
Utgivningsdatum
2016-05-18
Upplaga
3
Förlag
Pearson
Medarbetare
Norvig, Peter
Dimensioner
255 x 205 x 35 mm
Vikt
1903 g
Antal komponenter
1
Komponenter
,
ISBN
9781292153964
Artificial Intelligence: A Modern Approach, Global Edition (häftad)

Artificial Intelligence: A Modern Approach, Global Edition

(1 röst)
Häftad Engelska, 2016-05-18
661
Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.
For one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.

The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.
Visa hela texten

Passar bra ihop

  1. Artificial Intelligence: A Modern Approach, Global Edition
  2. +
  3. Artificial Intelligence

De som köpt den här boken har ofta också köpt Artificial Intelligence av Stuart Russell (inbunden).

Köp båda 2 för 2710 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Stuart Russell

Bloggat om Artificial Intelligence: A Modern Approac...

Innehållsförteckning

I. Artificial Intelligence

1. Introduction

1.1 What is AI?

1.2 The Foundations of Artificial Intelligence

1.3 The History of Artificial Intelligence

1.4 The State of the Art

1.5 Summary, Bibliographical and Historical Notes, Exercises

2. Intelligent Agents

2.1 Agents and Environments

2.2 Good Behavior: The Concept of Rationality

2.3 The Nature of Environments

2.4 The Structure of Agents

2.5 Summary, Bibliographical and Historical Notes, Exercises

II. Problem-solving

3. Solving Problems by Searching

3.1 Problem-Solving Agents

3.2 Example Problems

3.3 Searching for Solutions

3.4 Uninformed Search Strategies

3.5 Informed (Heuristic) Search Strategies

3.6 Heuristic Functions

3.7 Summary, Bibliographical and Historical Notes, Exercises

4. Beyond Classical Search

4.1 Local Search Algorithms and Optimization Problems

4.2 Local Search in Continuous Spaces

4.3 Searching with Nondeterministic Actions

4.4 Searching with Partial Observations

4.5 Online Search Agents and Unknown Environments

4.6 Summary, Bibliographical and Historical Notes, Exercises

5. Adversarial Search

5.1 Games

5.2 Optimal Decisions in Games

5.3 AlphaBeta Pruning

5.4 Imperfect Real-Time Decisions

5.5 Stochastic Games

5.6 Partially Observable Games

5.7 State-of-the-Art Game Programs

5.8 Alternative Approaches

5.9 Summary, Bibliographical and Historical Notes, Exercises

6. Constraint Satisfaction Problems

6.1 Defining Constraint Satisfaction Problems

6.2 Constraint Propagation: Inference in CSPs

6.3 Backtracking Search for CSPs

6.4 Local Search for CSPs

6.5 The Structure of Problems

6.6 Summary, Bibliographical and Historical Notes, Exercises

III. Knowledge, Reasoning, and Planning

7. Logical Agents

7.1 Knowledge-Based Agents

7.2 The Wumpus World

7.3 Logic

7.4 Propositional Logic: A Very Simple Logic

7.5 Propositional Theorem Proving

7.6 Effective Propositional Model Checking

7.7 Agents Based on Propositional Logic

7.8 Summary, Bibliographical and Historical Notes, Exercises

8. First-Order Logic

8.1 Representation Revisited

8.2 Syntax and Semantics of First-Order Logic

8.3 Using First-Order Logic

8.4 Knowledge Engineering in First-Order Logic

8.5 Summary, Bibliographical and Historical Notes, Exercises

9. Inference in First-Order Logic

9.1 Propositional vs. First-Order Inference

9.2 Unification and Lifting

9.3 Forward Chaining

9.4 Backward Chaining

9.5 Resolution

9.6 Summary, Bibliographical and Historical Notes, Exercises

10. Classical Planning

10.1 Definition of Classical Planning

10.2 Algorit...