Rotating Machinery Vibration (inbunden)
Inbunden (Hardback)
Antal sidor
2 New edition
CRC Press Inc
black and white 9 Illustrations 8-page color insert Over 100 29 Tables color 189 Illustrations
8-page color insert; Over 100; 29 Tables, black and white; 9 Illustrations, color; 189 Illustrations
236 x 168 x 32 mm
745 g
Antal komponenter
Rotating Machinery Vibration (inbunden)

Rotating Machinery Vibration

From Analysis to Troubleshooting, Second Edition

Inbunden Engelska, 2009-12-23
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Diagnosis and correction are critical tasks for the vibrations engineer. Many causes of rotor vibration are so subtle and pervasive that excessive vibration continues to occur despite the use of usually effective design practices and methods of avoidance. Rotating Machinery Vibration: From Analysis to Troubleshooting provides a comprehensive, consolidated overview of the fundamentals of rotating machinery vibration and addresses computer model building, sources and types of vibration, and machine vibration signal analysis. This reference is a powerful tool to strengthen vital in-house competency on the subject for professionals in a variety of fields. After presenting governing fundamental principles and background on modern measurement, computational tools, and troubleshooting methods, the author provides practical instruction and demonstration on how to diagnose vibration problems and formulate solutions. The topic is covered in four sequential sections: Primer on Rotor Vibration, Use of Rotor Dynamic Analyses, Monitoring and Diagnostics, and Troubleshooting Case Studies. This book includes comprehensive descriptions of vibration symptoms for rotor unbalance, dynamic instability, rotor-stator rubs, misalignment, loose parts, cracked shafts, and rub-induced thermal bows. It is an essential reference for mechanical, chemical, design, manufacturing, materials, aerospace, and reliability engineers. Particularly useful as a reference for specialists in vibration, rotating machinery, and turbomachinery, it also makes an ideal text for upper-level undergraduate and graduate students in these disciplines.
Visa hela texten

Passar bra ihop

  1. Rotating Machinery Vibration
  2. +
  3. Rotating Machinery Research and Development Test Rigs

De som köpt den här boken har ofta också köpt Rotating Machinery Research and Development Tes... av Maurice L Adams (inbunden).

Köp båda 2 för 4168 kr


Har du läst boken? Sätt ditt betyg »

Bloggat om Rotating Machinery Vibration

Övrig information

Maurice L. Adams, Jr. is founder and past president of Machinery Vibration Inc., as well as professor of mechanical and aerospace engineering at Case Western Reserve University. The author of over 100 publications and the holder of U.S. patents, he is a member of the American Society of Mechanical Engineers. Professor Adams received the BSME degree (1963) from Lehigh University, Bethlehem, Pennsylvania; the MEngSc degree (1970) from Pennsylvania State University, University Park, Pennsylvania; and the PhD degree (1977) from the University of Pittsburgh, Pennsylvania. Dr. Adams worked on rotating machinery engineering for 14 years in industry prior to becoming a professor in 1977, including employment at Allis Chalmers, Worthington, Franklin Institute Research Laboratories, and Westinghouse Corporate R&D Center.


Part I: Primer on Rotor Vibration Vibration Concepts and Methods One-Degree-of-Freedom Model Multi-DOF Models Modes, Excitation, and Stability of Multi-DOF Models Lateral Rotor Vibration Analysis Models Simple Linear Models Formulations for RDA Software Insights into Linear LRVs Nonlinear Effects in Rotor Dynamical Systems Torsional Rotor Vibration Analysis Models Rotor-Based Spinning Reference Frames Single Uncoupled Rotor Coupled Rotors Semidefinite Systems Part II: Rotor Dynamic Analyses RDA Code for Lateral Rotor Vibration Analyses Unbalance Steady-State Response Computations Instability Self-Excited-Vibration Threshold Computations Additional Sample Problems Bearing and Seal Rotor Dynamics Liquid-Lubricated Fluid-Film Journal Bearings Experiments to Measure Dynamic Coefficients Annular Seals Rolling Contact Bearings Squeeze-Film Dampers Magnetic Bearings Compliance Surface Foil Gas Bearings Turbo-Machinery Impeller and Blade Effects Centrifugal Pumps Centrifugal Compressors High-Pressure Steam Turbines and Gas Turbines Axial Flow Compressors Part III Monitoring and Diagnostics Rotor Vibration Measurement and Acquisition Introduction to Monitoring and Diagnostics Measured Vibration Signals and Associated Sensors Vibration Data Acquisition Signal Conditioning Vibration Severity Guidelines Casing and Bearing Cap Vibration Displacement Guidelines Standards, Guidelines, and Acceptance Criteria Shaft Displacement Criteria Signal Analysis and Identification of Vibration Causes Vibration Trending and Baselines FFT Spectrum Rotor Orbit Trajectories Bode, Polar, and Spectrum Cascade Plots Wavelet Analysis Tools Chaos Analysis Tools Symptoms and Identification of Vibration Causes Part IV Trouble-Shooting Case Studies Forced Vibration and Critical Speed Case Studies HP Steam Turbine Passage through First Critical Speed HP-IP Turbine Second Critical Speed through Power Cycling Boiler Feed Pumps: Critical Speeds at Operating Speed Nuclear Feed Water Pump Cyclic Thermal Rotor Bow Power Plant Boiler Circulating Pumps Nuclear Plant Cooling Tower Circulating Pump Resonance Generator Exciter Collector Shaft Critical Speeds Self-Excited Rotor Vibration Case Studies Swirl Brakes Cure Steam Whirl in a 1300 MW Unit Bearing Unloaded by Nozzle Forces Allows Steam Whirl Misalignment Causes Oil Whip/Steam Whirl "Duet" Additional Rotor Vibration Cases and Topics Vertical Rotor Machines Vector Turning from Synchronously Modulated Rubs Air Preheater Drive Structural Resonances Aircraft Auxiliary Power Unit Commutator Vibration-Caused Uneven Wear Impact Tests for Vibration Problem Diagnoses Bearing Looseness Effects Tilting-Pad versus Fixed-Surface Journal Bearings Base-Motion Excitations from Earthquake and Shock Parametric Excitation: Nonaxisymmetric Shaft Stiffness Rotor Balancing Index