- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 456
- Utgivningsdatum
- 2011-11-15
- Upplaga
- Softcover reprint of the original 1st ed. 1994
- Förlag
- Springer-Verlag New York Inc.
- Medarbetare
- Hager, William W. (ed.), Hearn, D. W. (ed.), Pardalos, Panos (ed.)
- Illustrationer
- XIV, 456 p.
- Dimensioner
- 234 x 156 x 24 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9781461336341
- 663 g
Du kanske gillar
-
Adobe Premiere Pro Classroom in a Book (2020 release)
Maxim Jago
Mixed media productLarge Scale Optimization
State of the Art
2269Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Clustering Challenges In Biological Networks av W Art Chaovalitwongse, Sergiy Butenko, Panos M Pardalos (inbunden).
Köp båda 2 för 3748 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Theory of Information and its Value
Ruslan L Stratonovich, Roman V Belavkin, Panos M Pardalos, Jose C Principe
-
Handbook of Applied Optimization
Panos M Pardalos
-
Handbook of Optimization in Telecommunications
Mauricio G C Resende, Panos M Pardalos
-
Optimization and Control of Bilinear Systems
Panos M Pardalos, Vitaliy A Yatsenko
Innehållsförteckning
Preface. Restarting Strategies for the DQA Algorithm; A.J. Berger, J.M. Mulvey, A. Ruszczynski. Mathematical Equivalence of the Auction Algorithm for Assignment and the epsilon-Relaxation (Preflow-Push) Method for Min Cost Flow; D.P. Bertsekas. Preliminary Computational Experience with Modified Log-Barrier Functions for Large-Scale Nonlinear Programming; M.G. Breitfeld, D.F. Shanno. A New Stochastic/Perturbation Method for Large-Scale Global Optimization and its Application to Water Cluster Problems; R.H. Byrd, T. Derby, E. Eskow, K.P.B. Oldenkamp, R.B. Schnabel. Improving the Decomposition of Partially Separable Functions in the Context of Large-Scale Optimization: a First Approach; A.R. Conn, N. Gould, P.L. Toint. Gradient-Related Constrained Minimization Algorithms in Function Spaces: Convergence Properties and Computational Implications; J.C. Dunn. Some Reformulations and Applications of the Alternating Direction Method of Multipliers; J. Eckstein, M. Fukushima. Experience with a Primal Presolve Algorithm; R. Fourer, D.M. Gay. A Trust Region Method for Constrained Nonsmooth Equations; S.A. Gabriel, Jong-Shi Pang. On the Complexity of a Column Generation Algorithm for Convex or Quasiconvex Feasibility Problems; J.-L. Goffin, Zhi-Quan Luo, Yinyu Ye. Identificiation of the Support of Nonsmoothness; C.T. Kelley. On Very Large Scale Assignment Problems; Y. Lee, J.B. Orlin. Numerical Solution of Parabolic State Constrained Control Problems Using SQP and Interior-Point-Methods; F. Leibfritz, E.W. Sachs. A Global Optimization Method for Weber's Problem with Attraction and Repulsion; C.D. Maranas, C.A. Floudas. Large-Scale Diversity Minimization via Parallel Genetic Algorithms; R.R. Meyer, J. Yackel. A Numerical Comparison of Barrier andModified Barrier Methods for Large-Scale Bound-Constrained Optimization; S.G. Nash, R. Polyak, A. Sofer. A Numerical Study of Some Data Association Problems Arising in Multitarget Tracking; A.B. Poore, N. Rijavec. Identifying the Optimal Face of a Network Linear Program with a Globally Convergent Interior Point Method; M.G.C. Resende, T. Tsuchiya, G. Veiga. Solution of Large Scale Stochastic Programs with Stochastic Decomposition Algorithms; S. Sen, J.Mai, J.L. Higle. A Simple, Quadratically Convergent Interior Point Algorithm for Linear Programming and Convex Quadratic Programming; A.L. Tits, J.L. Zhou. On Two Algorithms for Nonconvex Nonsmooth Optimization Problems in Structural Mechanics; M.Ap. Tzaferopoulos, E.S. Mistakidis, C.D. Bisbos, P.D. Panagiotopoulos.