Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients (e-bok)
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Antal sidor
99
Förlag
American Mathematical Society
ISBN
9781470422783
Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients (e-bok)

Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients E-bok

E-bok (PDF - DRM), Engelska
1229
Ladda ned och läs i en e-boksläsare. Tips på appar
Finns även som
Visa alla 1 format & utgåvor
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »