Spectral Invariants With Bulk, Quasi-Morphisms and Lagrangian Floer Theory (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
262
Utgivningsdatum
2019-10-30
Förlag
American Mathematical Society
ISBN
9781470436254
Spectral Invariants With Bulk, Quasi-Morphisms and Lagrangian Floer Theory (häftad)

Spectral Invariants With Bulk, Quasi-Morphisms and Lagrangian Floer Theory

Häftad Engelska, 2019-10-30
769
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
In this paper the authors first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entov-Polterovich theory of spectral symplectic quasi-states and quasi-morphisms by incorporating bulk deformations, i.e., deformations by ambient cycles of symplectic manifolds, of the Floer homology and quantum cohomology. Essentially the same kind of construction is independently carried out by Usher in a slightly less general context. Then the authors explore various applications of these enhancements to the symplectic topology, especially new construction of symplectic quasi-states, quasi-morphisms and new Lagrangian intersection results on toric and non-toric manifolds. The most novel part of this paper is its use of open-closed Gromov-Witten-Floer theory and its variant involving closed orbits of periodic Hamiltonian system to connect spectral invariants (with bulk deformation), symplectic quasi-states, quasi-morphism to the Lagrangian Floer theory (with bulk deformation). The authors use this open-closed Gromov-Witten-Floer theory to produce new examples. Using the calculation of Lagrangian Floer cohomology with bulk, they produce examples of compact symplectic manifolds $(M,\omega)$ which admits uncountably many independent quasi-morphisms $\widetilde{{\rm Ham}}(M,\omega) \to {\mathbb{R}}$. They also obtain a new intersection result for the Lagrangian submanifold in $S^2 \times S^2$.
Visa hela texten

Passar bra ihop

  1. Spectral Invariants With Bulk, Quasi-Morphisms and Lagrangian Floer Theory
  2. +
  3. Lagrangian Intersection Floer Theory

De som köpt den här boken har ofta också köpt Lagrangian Intersection Floer Theory av Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, Kaoru Ono (häftad).

Köp båda 2 för 1318 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Kenji Fukaya, Stony Brook University, New York, and Institute for Basic Sciences Pohang, Korea. Yong-Geun Oh, Institute for Basic Sciences, Pohang, Korea. Hiroshi Ohta, Nagoya University, Japan. Kaoru Ono, Kyoto University, Japan.

Innehållsförteckning

Introduction Part 1. Review of spectral invariants: Hamiltonian Floer-Novikov complex Floer boundary map Spectral invariants Part 2. Bulk deformations of Hamiltonian Floer homology and spectral invariants: Big quantum cohomology ring: review Hamiltonian Floer homology with bulk deformations Spectral invariants with bulk deformation Proof of the spectrality axiom Proof of $C^0$-Hamiltonian continuity Proof of homotopy invariance Proof of the triangle inequality Proofs of other axioms Part 3. Quasi-states and quasi-morphisms via spectral invariants with bulk: Partial symplectic quasi-states Construction by spectral invariant with bulk Poincare duality and spectral invariant Construction of quasi-morphisms via spectral invariant with bulk Part 4. Spectral invariants and Lagrangian Floer theory: Operator $\mathfrak q$ review Criterion for heaviness of Lagrangian submanifolds Linear independence of quasi-morphisms Part 5. Applications: Lagrangian Floer theory of toric fibers: review Spectral invariants and quasi-morphisms for toric manifolds Lagrangian tori in $k$-points blow up of $\mathbb {C}P^2$ ($k\ge 2$) Lagrangian tori in $S^2 \times S^2$ Lagrangian tori in the cubic surface Detecting spectral invariant via Hochschild cohomology Part 6. Appendix: $\mathcal {P}_{(H_\chi ,J_\chi ),\ast }^{\mathfrak b}$ is an isomorphism Independence on the de Rham representative of $\mathfrak b$ Proof of Proposition 20.7 Seidel homomorphism with bulk Spectral invariants and Seidel homomorphism Part 7. Kuranishi structure and its CF-perturbation: summary: Kuranishi structure and good coordinate system Strongly smooth map and fiber product CF perturbation and integration along the fiber Stokes' theorem Composition formula Bibliography Index.