Python Data Science Handbook (e-bok)
Fler böcker inom
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Kan laddas ned under 24 månader, dock max 3 gånger.
Antal sidor
O'Reilly Media
Python Data Science Handbook (e-bok)

Python Data Science Handbook (e-bok)

Essential Tools for Working with Data

E-bok (PDF - DRM), Engelska, 2016-11-21
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Finns även som
Visa alla 2 format & utgåvor
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them allIPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, youll learn how to use:IPython and Jupyter: provide computational environments for data scientists using PythonNumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in PythonPandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in PythonMatplotlib: includes capabilities for a flexible range of data visualizations in PythonScikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Visa hela texten


Har du läst boken? Sätt ditt betyg »

Fler böcker av Jake Vanderplas

  • Data Science mit Python

    Jake Vanderplas

    Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pan...