- Format
- Inbunden (Hardback)
- Språk
- Engelska
- Antal sidor
- 430
- Utgivningsdatum
- 2018-12-14
- Upplaga
- 1st ed. 2019
- Förlag
- Humana Press Inc.
- Medarbetare
- Sanguinetti, Guido (ed.), Huynh-Thu, van Anh (ed.)
- Illustratör/Fotograf
- Bibliographie 39 schwarz-weiße und 68 farbige Abbildungen
- Illustrationer
- 71 Illustrations, color; 43 Illustrations, black and white; XI, 430 p. 114 illus., 71 illus. in colo
- Dimensioner
- 254 x 178 x 25 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Hardback
- ISBN
- 9781493988815
- 985 g
Du kanske gillar
-
Applied Radar EW
Anders Eneroth
InbundenHow To Do Nothing
Jenny Odell
InbundenGene Regulatory Networks
Methods and Protocols
1349Skickas inom 3-6 vardagar.
Fri frakt inom Sverige för privatpersoner.Passar bra ihop
De som köpt den här boken har ofta också köpt Imaging Spectroscopy for Scene Analysis av Antonio Robles-Kelly, Cong Phuoc Huynh (häftad).
Köp båda 2 för 2778 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Learning and Inference in Computational Systems Biology
Neil D Lawrence, Mark Girolami, Magnus Rattray, Guido Sanguinetti
-
Computational Methods in Systems Biology
Luca Bortolussi, Guido Sanguinetti
-
Modeling Conflict Dynamics with Spatio-temporal Data
Andrew Zammit-Mangion, Michael Dewar, Visakan Kadirkamanathan, Anaid Flesken, Guido Sanguinetti
-
Pattern Recognition in Bioinformatics
Visakan Kadirkamanathan, Guido Sanguinetti, Mark Girolami, Mahesan Niranjan, Josselin Noirel
Recensioner i media
"The book covers a variety of computational and mathematical aspects related to the inference of gene regulatory networks. The style of the chapters seamlessly binds the comprehensive overview that recommended the book to junior researchers and the thorough description of topics, highlighting new direction of research, that would appeal to post-graduates and established researchers." (Irina Ioana Mohorianu, zbMATH 1417.92005, 2019)
Innehållsförteckning
Preface...Table of Contents...Contributing Authors... 1. Gene Regulatory Network Inference: An Introductory SurveyVan Anh Huynh-Thu and Guido Sanguinetti 2. Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian NetworksFrank Dondelinger and Sach Mukherjee 3. Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data Marco Grzegorczyk, Andrej Aderhold, and Dirk Husmeier 4. Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data Lingfei Wang and Tom Michoel 5. Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks Alex White and Matthieu Vignes 6. A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer Julien Chiquet, Guillem Rigaill, and Martina Sundqvist 7. Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks Alireza Fotuhi Siahpirani, Deborah Chasman, and Sushmita Roy 8. Unsupervised Gene Network Inference with Decision Trees and Random Forests Van Anh Huynh-Thu and Pierre Geurts 9. Tree-Based Learning of Regulatory Network Topologies and Dynamics with Jump3 Van Anh Huynh-Thu and Guido Sanguinetti 10. Network Inference from Single-Cell Transcriptomic Data Helena Todorov, Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys 11. Inferring Gene Regulatory Networks from Multiple Datasets Christopher A. Penfold, Iulia Gherman, Anastasiya Sybirna, and David L. Wild 12. Unsupervised GRN Ensemble Pau Bellot, Philippe Salembier, Ngoc C. Pham, and Patrick E. Meyer 13. Learning Differential Module Networks across Multiple Experimental Conditions Pau Erola, Eric Bonnet, and Tom Michoel 14. Stability in GRN Inference Giuseppe Jurman, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, and Cesare Furlanello 15. Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling Olivia Angelin-Bonnet, Patrick J. Biggs, and Matthieu Vignes 16. Scalable Inference of Ordinary Differential Equation Models of Biochemical ProcessesFabian Froehlich, Carolin Loos, and Jan Hasenauer