Advances in Urethane (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
288
Utgivningsdatum
1996-05-01
Förlag
CRC Press Inc
Medarbetare
Frisch, Frisch C. / Frisch, Kurt C.
Illustratör/Fotograf
black & white illustrations
Illustrationer
black & white illustrations
Volymtitel
Volume XIII
Dimensioner
229 x 152 x 16 mm
Vikt
400 g
Antal komponenter
1
Komponenter
23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam
ISBN
9781566764100
Advances in Urethane (inbunden)

Advances in Urethane

Science & Technology, Volume XIII

Inbunden Engelska, 1996-05-01
2239
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 159 kr för privatpersoner.
This book presents the reports on the developments in the field of urethane. It includes information on polyurethane automotive carpet composites, pentane blown polyurethane foams, and applications of polyols derived from renewable resources in polyurethanes and liquid crystalline polyurethanes.
Visa hela texten

Passar bra ihop

  1. Advances in Urethane
  2. +
  3. Advances in Interpenetrating Polymer Networks, Volume III

De som köpt den här boken har ofta också köpt Advances in Interpenetrating Polymer Networks, ... av Kurt C Frisch, Daniel Klempner (inbunden).

Köp båda 2 för 3318 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

PU Automotive Carpet Composites for Vehicle Interior Noise Control: Physical Basis of Behavior A. Cunningham, ICI Polyurethane Research Centre, Belgium; N.C. Hilyard, Materials Research Institute, Sheffield Hallam University, UK Abstract Introduction Background Characterisation of Composite Performance Theoretical Basis Test Methods Test Results-Vibration Test Results-Airborne Conclusions References Pentane Blown Polyurethane Foams O. Volkert, BASF AG, Germany Abstract Introduction Pentanes as Blowing Agents Pentane in Integral Skin Foam Pentane in Rigid Foam Safety Environmental Pollution Toxicology Conclusions References Applications of Polyols Derived from Renewable Resources in Polyurethane Shaio-Wen Wong and Song-Bo Wang, Polymer Institute, University of Detroit Mercy; James F. Fraves and Innocent Odacha, Department of Biology, Center for Excellence in Environmental Engineering and Science, University of Detroit Mercy Abstract Introduction Experimental HPLC Analysis Results and Discussion: 1. Urethane Formation 2. Urethane-Isocyanurate Formation Biodegradability Conclusions References Phenylene Diisocyanate Based Polyurethane Elastomers Ajaib Singh, Research and Development, Adiprener/Vibrathaner, Uniroyal Chemical Company Abstract para-Phenylene Diisocyanate (PPDI) Physical Properties Toxicity Reactivity Elastomers Processing Morphology Properties Toughness High Temperature Properties Hydrolytic Stability Flex Fatigue Resistance Dynamic Performance Applications References Urethane Elastomers/Liquid Cyrstalline Polyurethane Blends J. G"hde, M.-M. Pohl, R. Mix and R. Dany, Institute of Applied Chemistry Berlin-Adlershof; G. Hinrichsen, Technical University of Berlin, Institute of Nonmetallic Materials, Germany Abstract Introduction Experimental Results and Discussion Conclusions References Liquid Crystalline Polyurethanes Piotr Penczek and Barbara Szczepakiak, Industrial Chemistry Research Institute, Poland; Kurt C. Frisch, Polymer Institute, University of Detroit Mercy; Aleksandra Wolinska-Grabczyk, Institute of Coal Chemistry, Polish Academy of Science Abstract Introduction Preparation Synthesis Properties Applications Conclusions References Synthesis and Structure-Property Relationships of Polyurethane Hydrogels E. Haschke, Busak"Shamban, Inc.; G. Hill, Vistakon-Johnson & Johnson Vision Products, Inc.; V. Sendijarevic, S. Wong and K. C. Frisch, Polymer Institute, University of Detroit Mercy Abstract Introduction Experimental Results and Discussion Conclusions References Special Report: Recycling of Polyurethane Polymers Michele Modesti, University of Padova, Industrial Chemistry-Engineering Department, Italy Abstract Introduction Recycling of Materials: Physical Processes: Recycling of Material as Filler, Flake and Particle Rebonding, Hot Compression Molding; Chemical Recycling: Hydrogenation, Hydrolysis, Glycolysis Glycolysis Chemistry: Rigid Polyurethane Foams Industrial Process Information: Glycolysis of Flexible Polyurethane Foams, Glycolysis of RIM Polyurethanes, Recycling of Microcellular Polyurethane Elastomer Waste, Pyrolysis Energy Recovery: Combustion Conclusion References