Scala:Applied Machine Learning (e-bok)
Format
E-bok
Filformat
EPUB med Adobe-kryptering
Om Adobe-kryptering
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Antal sidor
1265
Utgivningsdatum
2017-02-23
Förlag
Packt Publishing
ISBN
9781787124554
Scala:Applied Machine Learning (e-bok)

Scala:Applied Machine Learning (e-bok)

E-bok (EPUB - DRM), Engelska, 2017-02-23
839
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest featuresAbout This BookBuild functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples providedLeverage your expertise in Scala programming to create and customize your own scalable machine learning algorithmsExperiment with different techniques; evaluate their benefits and limitations using real-world financial applicationsGet to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainabilityWho This Book Is ForThis Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning.What You Will LearnCreate Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizationsDeploy scalable parallel applications using Apache Spark, loading data from HDFS or HiveSolve big data problems with Scala parallel collections, Akka actors, and Apache Spark clustersApply key learning strategies to perform technical analysis of financial marketsUnderstand the principles of supervised and unsupervised learning in machine learningWork with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquetConstruct reliable and robust data pipelines and manage data in a data-driven enterpriseImplement scalable model monitoring and alerts with ScalaIn DetailThis Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions.The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial.The next module, Mastering Scala Machine Learning, is the final step in this course. It will take your knowledge to next level and help you use the knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees.By the end of this course, you will be a master at Scala machine learning and have enough expertise to be able to build complex machine learning projects using Scala.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:Scala for Data Science, Pascal BugnionScala for Machine Learning, Patrick NicolasMastering Scala Machine Learning, Alex KozlovStyle and approachA tutorial with complete examples, this course will give you the tools to start building useful data engineering and data science solutions straightaway. This course provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna