Mastering Machine Learning with scikit-learn - (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
254
Utgivningsdatum
2017-07-24
Upplaga
2 Revised edition
Förlag
Packt Publishing Limited
Illustrationer
Black & white illustrations
Dimensioner
235 x 190 x 13 mm
Vikt
440 g
Antal komponenter
1
Komponenter
3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam
ISBN
9781788299879
Mastering Machine Learning with scikit-learn - (häftad)

Mastering Machine Learning with scikit-learn -

Häftad Engelska, 2017-07-24
599
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Use scikit-learn to apply machine learning to real-world problems About This Book * Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks * Learn how to build and evaluate performance of efficient models using scikit-learn * Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn * Review fundamental concepts such as bias and variance * Extract features from categorical variables, text, and images * Predict the values of continuous variables using linear regression and K Nearest Neighbors * Classify documents and images using logistic regression and support vector machines * Create ensembles of estimators using bagging and boosting techniques * Discover hidden structures in data using K-Means clustering * Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.
Visa hela texten

Passar bra ihop

  1. Mastering Machine Learning with scikit-learn -
  2. +
  3. Learning scikit-learn: Machine Learning in Python

De som köpt den här boken har ofta också köpt Learning scikit-learn: Machine Learning in Python av Ral Garreta, Guillermo Moncecchi (häftad).

Köp båda 2 för 938 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Gavin Hackeling

  • scikit-learn : Machine Learning Simplified

    Raul Garreta, Guillermo Moncecchi, Trent Hauck, Gavin Hackeling

    Implement scikit-learn into every step of the data science pipelineAbout This BookUse Python and scikit-learn to create intelligent applicationsDiscover how to apply algorithms in a variety of situations to tackle common and not-so common challeng...

Övrig information

Gavin Hackeling is a data scientist and author. He was worked on a variety of machine learning problems, including automatic speech recognition, document classification, object recognition, and semantic segmentation. An alumnus of the University of North Carolina and New York University, he lives in Brooklyn with his wife and cat.