Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition
De som köpt den här boken har ofta också köpt Elden Ring Official Strategy Guide, Vol. 3 av Future Press (inbunden).
Köp båda 2 för 1232 kr"Algorithmic Trading is about timing the market using data and algorithms in order to improve your own trading performance, outcomes, and earnings. The wealth of techniques, algorithms, and models that are used for those purposes are presented comprehensively in this giant book and are also applicable to countless other predictive modeling applications and diverse use cases. That makes this an excellent machine learning book for all learners and users of predictive algorithms in data science and analytics."
--
Dr Kirk Borne, Principal Data Scientist, Data Science Fellow, and Executive Advisor at Booz Allen Hamilton, and co-author of Ten Signs of Data Science Maturity
"Stock markets are one of the most uncertain sectors, where decision making is often more an art than a science. Machine Learning is one of the best resources to analyze a large amount of data and make the most reasonable predictions. In his book, Stefan Jansen describes all cutting-edge methods, starting from the basic concepts concerning the dynamics of a stock market and going deeper and deeper into the application of robust algorithms to implement predictive analytics. With a clear, concise, and effective style, the author guides the reader on a journey to discover time-series analysis, regression methods, Bayesian algorithms, NLP, and GANs. All algorithms are provided with financial explanations and practical examples to help the reader start making rational and intelligent investments!"
--
Giuseppe Bonaccorso, Global Head of Innovative Data Science at Bayer Pharmaceuticals, and author of Mastering Machine Learning Algorithms Second Edition
"If you have done a finance module before, you will know that data and mathematics comes together very well in the world of trading. This idea is further reinforced in the book "The Man who Solved the Market" by Gregory Zuckerman. As the world of data grows in the 4 Vs dimension, namely Volume, Variety, Velocity, and Veracity, the circumstances present many opportunities for data to be used in algorithmic trading. Stefan covers the topic of algorithmic trading comprehensively, from selecting features and portfolio management to using text mining to spot trading opportunities. You will be able to find lots of possible use cases for Machine Learning in your trading! Together with the tools stated in the book which are open-source (no license fees!), your entry into the algorithmic trading world will be easier."
--
Stefan is the founder and CEO of Applied AI. He advises Fortune 500 companies, investment firms, and startups across industries on data & AI strategy, building data science teams, and developing end-to-end machine learning solutions for a broad range of business problems. Before his current venture, he was a partner and managing director at an international investment firm, where he built the predictive analytics and investment research practice. He was also a senior executive at a global fintech company with operations in 15 markets, advised Central Banks in emerging markets, and consulted for the World Bank. He holds Master's degrees in Computer Science from Georgia Tech and in Economics from Harvard and Free University Berlin, and a CFA Charter. He has worked in six languages across Europe, Asia, and the Americas and taught data science at Datacamp and General Assembly.Övrig information
Table of Contents Machine Learning for Trading From Idea to Execution Market and Fundamental Data Sources and Techniques Alternative Data for Finance Categories and Use Cases Financial Feature Engineering How to Research Alpha Factors Portfolio Optimization and Performance Evaluation The Machine Learning Process Linear Models From Risk Factors to Return Forecasts The ML4T Workflow From Model to Strategy Backtesting (N.B. Please use the Look Inside option to see further chapters)