Stochastic Calculus for Fractional Brownian Motion and Applications (inbunden)
Inbunden (Hardback)
Antal sidor
2008 ed.
Springer London Ltd
Hu, Yaozhong
XII, 330 p.
240 x 160 x 20 mm
640 g
Antal komponenter
1 Hardback
Stochastic Calculus for Fractional Brownian Motion and Applications (inbunden)

Stochastic Calculus for Fractional Brownian Motion and Applications

Inbunden Engelska, 2008-02-01
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Visa hela texten

Passar bra ihop

  1. Stochastic Calculus for Fractional Brownian Motion and Applications
  2. +
  3. Stochastic Partial Differential Equations

De som köpt den här boken har ofta också köpt Stochastic Partial Differential Equations av Helge Holden, Bernt Oksendal, Jan Uboe, Tusheng Zhang (häftad).

Köp båda 2 för 2318 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Recensioner i media

From the reviews: "The development of stochastic integration with respect to fBm continues to be a very active area of research ... became a necessity to collect the different approaches into a single monograph, in order to allow researchers in this field to have a general and quick view of the state of the art. This book very nicely attains this aim, and I can recommend it to any person interested in fractional Brownian motion." (Ivan Nourdin, Mathematical Reviews, Issue 2010 a)


Fractional Brownian motion.- Intrinsic properties of the fractional Brownian motion.- Stochastic calculus.- Wiener and divergence-type integrals for fractional Brownian motion.- Fractional Wick Ito Skorohod (fWIS) integrals for fBm of Hurst index H >1/2.- WickIto Skorohod (WIS) integrals for fractional Brownian motion.- Pathwise integrals for fractional Brownian motion.- A useful summary.- Applications of stochastic calculus.- Fractional Brownian motion in finance.- Stochastic partial differential equations driven by fractional Brownian fields.- Stochastic optimal control and applications.- Local time for fractional Brownian motion.