- Format
- Inbunden (Hardback)
- Språk
- Engelska
- Antal sidor
- 330
- Utgivningsdatum
- 2008-02-01
- Upplaga
- 2008 ed.
- Förlag
- Springer London Ltd
- Medarbetare
- Hu, Yaozhong
- Illustrationer
- XII, 330 p.
- Dimensioner
- 240 x 160 x 20 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Hardback
- ISBN
- 9781852339968
- 640 g
Du kanske gillar
-
Stochastic Calculus for Fractional Brownian Motion and Applications
1359Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Stochastic Partial Differential Equations av Helge Holden, Bernt Oksendal, Jan Uboe, Tusheng Zhang (häftad).
Köp båda 2 för 2318 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Stochastic Differential Equations
Bernt Oksendal
-
Stochastic Partial Differential Equations
Helge Holden, Bernt Oksendal, Jan Uboe, Tusheng Zhang
-
Analysis On Gaussian Spaces
Yaozhong Hu
-
Malliavin Calculus for Levy Processes with Applications to Finance
Giulia Di Nunno, Bernt Oksendal, Frank Proske
Recensioner i media
From the reviews: "The development of stochastic integration with respect to fBm continues to be a very active area of research ... became a necessity to collect the different approaches into a single monograph, in order to allow researchers in this field to have a general and quick view of the state of the art. This book very nicely attains this aim, and I can recommend it to any person interested in fractional Brownian motion." (Ivan Nourdin, Mathematical Reviews, Issue 2010 a)
Innehållsförteckning
Fractional Brownian motion.- Intrinsic properties of the fractional Brownian motion.- Stochastic calculus.- Wiener and divergence-type integrals for fractional Brownian motion.- Fractional Wick Ito Skorohod (fWIS) integrals for fBm of Hurst index H >1/2.- WickIto Skorohod (WIS) integrals for fractional Brownian motion.- Pathwise integrals for fractional Brownian motion.- A useful summary.- Applications of stochastic calculus.- Fractional Brownian motion in finance.- Stochastic partial differential equations driven by fractional Brownian fields.- Stochastic optimal control and applications.- Local time for fractional Brownian motion.