- Format
- Inbunden (Hardback)
- Språk
- Engelska
- Antal sidor
- 320
- Utgivningsdatum
- 1989-07-01
- Förlag
- Taylor & Francis Ltd
- Översättare
- M E Alferieff
- Originalspråk
- Russian
- Medarbetare
- Gobel, R. (red.)
- Illustratör/Fotograf
- illustrations
- Illustrationer
- illustrations
- Dimensioner
- 241 x 165 x 25 mm
- Vikt
- Antal komponenter
- 1
- ISSN
- 1041-5394
- ISBN
- 9782881246838
- 589 g
Du kanske gillar
-
Models for Concurrency
Uri Abraham
InbundenMultilinear Algebra
Russell Merris
InbundenLinear Algebra and Geometry
1449Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Arithmetic and Geometry of K3 Surfaces and Cala... av Radu Laza, Matthias Schutt, Noriko Yui (häftad).
Köp båda 2 för 3198 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Introduction to Modern Number Theory
Yu I Manin, Alexei A Panchishkin
-
Orthogonal Polynomials in Two Variables
P K Suetin
-
Exercises in Algebra
Alexandra I Kostrikin
Innehållsförteckning
Part 1 Linear spaces and linear mappings: linear spaces; basis and dimension; linear mappings; matrices; subspaces and direct sums; quotient spaces; duality; the structure of a linear mapping; the Jordan normal form; normed linear spaces; functions of linear operators; complexification and decomplexification; the language of categories; the categorical properties of linear spaces. Part 2 Geometry of spaces with an inner product: on geometry; inner products; classification theorems; the orthogonalization algorithm and orthogonal polynomials; Euclidian spaces; unitary spaces; orthogonal and unitary operators; self-adjoint operators; self-adjoint operators in quantum mechanics; the geometry of quadratic forms and the Eigenvalues of self-adjoint operators; three-dimensional Euclidean space; Minkowski space; symplectic space; Witt's theorem and Witt's group; Clifford algebras. Part 3 Affine and projective geometry: affine spaces, affine mappings and affine coordinates; affine groups; affine subspaces; convex polyhedra and linear programming; affine quadratic functions and quadrics; projective duality and projective quadrics; projective groups and projections; Desargues' and Pappus' configurations and classical projective geometry; the Kahler metric; algebraic varieties and Hilbert polynomials. Part 4 Multilinear algebra: tensor products of linear spaces; canonical isomorphisms and linear mappings of tensor products; the tensor algebra of a linear space; classical notation; symmetric tensors; skew-symmetric tensors and the exterior algebra of a linear space; exterior forms; tensor fields; tensor products in quantum mechanics.