Linear Algebra and Geometry (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
320
Utgivningsdatum
1989-07-01
Förlag
Taylor & Francis Ltd
Översättare
M E Alferieff
Originalspråk
Russian
Medarbetare
Gobel, R. (red.)
Illustratör/Fotograf
illustrations
Illustrationer
illustrations
Dimensioner
241 x 165 x 25 mm
Vikt
589 g
Antal komponenter
1
ISSN
1041-5394
ISBN
9782881246838
Linear Algebra and Geometry (inbunden)

Linear Algebra and Geometry

Inbunden Engelska, 1989-07-01
1449
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Visa hela texten

Passar bra ihop

  1. Linear Algebra and Geometry
  2. +
  3. Foundations of Module and Ring Theory

De som köpt den här boken har ofta också köpt Foundations of Module and Ring Theory av Robert Wisbauer (inbunden).

Köp båda 2 för 6968 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Part 1 Linear spaces and linear mappings: linear spaces; basis and dimension; linear mappings; matrices; subspaces and direct sums; quotient spaces; duality; the structure of a linear mapping; the Jordan normal form; normed linear spaces; functions of linear operators; complexification and decomplexification; the language of categories; the categorical properties of linear spaces. Part 2 Geometry of spaces with an inner product: on geometry; inner products; classification theorems; the orthogonalization algorithm and orthogonal polynomials; Euclidian spaces; unitary spaces; orthogonal and unitary operators; self-adjoint operators; self-adjoint operators in quantum mechanics; the geometry of quadratic forms and the Eigenvalues of self-adjoint operators; three-dimensional Euclidean space; Minkowski space; symplectic space; Witt's theorem and Witt's group; Clifford algebras. Part 3 Affine and projective geometry: affine spaces, affine mappings and affine coordinates; affine groups; affine subspaces; convex polyhedra and linear programming; affine quadratic functions and quadrics; projective duality and projective quadrics; projective groups and projections; Desargues' and Pappus' configurations and classical projective geometry; the Kahler metric; algebraic varieties and Hilbert polynomials. Part 4 Multilinear algebra: tensor products of linear spaces; canonical isomorphisms and linear mappings of tensor products; the tensor algebra of a linear space; classical notation; symmetric tensors; skew-symmetric tensors and the exterior algebra of a linear space; exterior forms; tensor fields; tensor products in quantum mechanics.