Monte Carlo and Quasi-Monte Carlo Methods (häftad)
Häftad (Paperback / softback)
Antal sidor
Softcover reprint of the original 1st ed. 2018
Springer Nature Switzerland AG
Glynn, Peter W. (ed.), Owen, Art B. (ed.)
45 Illustrations, color; 21 Illustrations, black and white; XI, 479 p. 66 illus., 45 illus. in color
234 x 156 x 25 mm
681 g
Antal komponenter
1 Paperback / softback
Monte Carlo and Quasi-Monte Carlo Methods (häftad)

Monte Carlo and Quasi-Monte Carlo Methods

MCQMC 2016, Stanford, CA, August 14-19

Häftad Engelska, 2019-01-05
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
Visa hela texten

Passar bra ihop

  1. Monte Carlo and Quasi-Monte Carlo Methods
  2. +
  3. Stochastic Simulation: Algorithms and Analysis

De som köpt den här boken har ofta också köpt Stochastic Simulation: Algorithms and Analysis av Soren Asmussen, Peter W Glynn (inbunden).

Köp båda 2 för 1808 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna


Part I Tutorials, Fred J. Hickernell, The Trio Identity for Quasi-Monte Carlo Error.- Pierre L'Ecuyer, Randomized Quasi-Monte Carlo: An Introduction for Practitioners.- Frances Y. Kuo and Dirk Nuyens, Application of Quasi-Monte Carlo Methods to PDEs with Random Coefficients - an Overview and Tutorial.- Part II Invited talks, Jose Blanchet and Zhipeng Liu, Malliavin-based Multilevel Monte Carlo Estimators for Densities of Max-stable Processes.- Nicolas Chopin and Mathieu Gerber, Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes.- Frances Y. Kuo and Dirk Nuyens, Hot New Directions for Quasi-Monte Carlo Research in Step with Applications.- Saul Toscano-Palmerin and Peter I. Frazier, Stratified Bayesian Optimization.- Part III Regular talks, Christoph Aistleitner, Dmitriy Bilyk, and Aleksandar Nikolov, Tusnady's Problem, the Transference Principle, and Non-Uniform QMC Sampling.- Ken Dahm and Alexander Keller, Learning Light Transport the Reinforced Way.- Adrian Ebert, Hernan Leovey, and Dirk Nuyens, Successive Coordinate Search and Component-by-Component Construction of Rank-1 Lattice Rules.- Wei Fang and Michael B. Giles, Adaptive Euler-Maruyama method for SDEs with non-globally Lipschitz drift.- J. Feng and M. Huber and Y. Ruan, Monte Carlo with User-Specified Relative Error.- Robert N. Gantner, Dimension Truncation in QMC for Affine-Parametric Operator Equations.- Michael B. Giles, Frances Y. Kuo, and Ian H. Sloan, Combining Sparse Grids, Multilevel MC and QMC for Elliptic PDEs with Random Coefficients.- Hiroshi Haramoto and Makoto Matsumoto, A Method to Compute an Appropriate Sample Size of a Two-Level Test for the NIST Test Suite.- Stefan Heinrich, Lower Complexity Bounds for Parametric Stochastic Ito Integration.- Lukas Herrmann and Christoph Schwab, QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs.- Masatake Hirao, QMC Designs and Determinantal Point Processes.- Adam W. Kolkiewicz, Efficient Monte Carlo For Diffusion Processes Using Ornstein-Uhlenbeck Bridges.- Ralph Kritzinger, Optimal Discrepancy Rate of Point Sets in Besov Spaces with Negative Smoothness.- Ralph Kritzinger, Helene Laimer, and Mario Neumuller, A Reduced Fast Construction of Polynomial Lattice Point Sets with Low Weighted Star Discrepancy.- David Mandel and Giray Okten, Randomized Sobol' Sensitivity Indices.- Hisanari Otsu, Shinichi Kinuwaki, and Toshiya Hachisuka, Supervised Learning of How to Blend Light Transport Simulations.- Pieterjan Robbe, Dirk Nuyens, and Stefan Vandewalle, A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger.- Shuang Zhao, Rong Kong, and Jerome Spanier, Towards Real-Time Monte Carlo for Biomedicine.- Zeyu Zheng, Jose Blanchet, and Peter W. Glynn, Rates of Convergence and CLTs for Subcanonical Debiased MLMC.