- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 740
- Utgivningsdatum
- 2019-01-18
- Upplaga
- 1st ed. 2019
- Förlag
- Springer Nature Switzerland AG
- Medarbetare
- Berlingerio, Michele (ed.), Bonchi, Francesco (ed.), Gärtner, Thomas (ed.), Hurley, Neil (ed.), Ifrim, Georgiana (ed.)
- Illustratör/Fotograf
- Bibliographie 190 schwarz-weiße Abbildungen
- Illustrationer
- 159 Illustrations, color; 292 Illustrations, black and white; XXXVIII, 740 p. 451 illus., 159 illus.
- Dimensioner
- 234 x 156 x 39 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783030109240
- 1071 g
Du kanske gillar
-
Machine Learning and Knowledge Discovery in Databases
European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I
1159Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Stealing the Network: How to Own an Identity av Ryan Russell, Riley Eller, Jay Beale, Chris Hurley, Tom Parker (häftad).
Köp båda 2 för 1408 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Kernels For Structured Data
Thomas Gartner
-
Privacy-Aware Knowledge Discovery
Francesco Bonchi, Elena Ferrari
-
Knowledge Discovery in Inductive Databases
Francesco Bonchi, Jean-Francois Boulicaut
-
Privacy, Security, and Trust in KDD
Francesco Bonchi, Elena Ferrari, Bradley Malin, Yucel Saygin
Innehållsförteckning
Adversarial Learning.- Image Anomaly Detection with Generative Adversarial Networks.- Image-to-Markup Generation via Paired Adversarial Learning.- Toward an Understanding of Adversarial Examples in Clinical Trials.- ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector.- Anomaly and Outlier Detection.- GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid.- Incorporating Privileged Information to Unsupervised Anomaly Detection.- L1-Depth Revisited: A Robust Angle-based Outlier Factor in High-dimensional Space.- Beyond Outlier Detection: LookOut for Pictorial Explanation.- Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier Features.- Group Anomaly Detection using Deep Generative Models.- Applications.- A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements.- Face-Cap: Image Captioning using Facial Expression Analysis.- Pedestrian Trajectory Prediction with Structured Memory Hierarchies.- Classification.- Multiple Instance Learning with Bag-level Randomized Trees.- One-class Quantification.- Deep F-Measure Maximization in Multi-Label Classification: A Comparative Study.- Ordinal Label Proportions.- AWX: An Integrated Approach to Hierarchical-Multilabel Classification.- Clustering and Unsupervised Learning.- Clustering in the Presence of Concept Drift.- Time Warp Invariant Dictionary Learning for Time Series Clustering.- How Your Supporters and Opponents Define Your Interestingness.- Deep Learning.- Efficient Decentralized Deep Learning by Dynamic Model Averaging.- Using Supervised Pretraining to Improve Generalization of Neural Networks on Binary Classification Problems.- Towards Efficient Forward Propagation on Resource-Constrained Systems.- Auxiliary Guided Autoregressive Variational Autoencoders.- Cooperative Multi-Agent Policy Gradient.- Parametric t-Distributed Stochastic Exemplar-centered Embedding.- Joint autoencoders: a flexible meta-learning framework.- Privacy Preserving Synthetic Data Release Using Deep Learning.- On Finer Control of Information Flow in LSTMs.- MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes.- Ontology alignment based on word embedding and random forest classification.- Domain Adaption in One-Shot Learning.- Ensemble Methods.- Axiomatic Characterization of AdaBoost and the Multiplicative Weight Update Procedure.- Modular Dimensionality Reduction.- Constructive Aggregation and its Application to Forecasting with Dynamic Ensembles.- MetaBags: Bagged Meta-Decision Trees for Regression.- Evaluation.- Visualizing the Feature Importance for Black Box Models.- Efficient estimation of AUC in a sliding window.- Controlling and visualizing the precision-recall tradeoff for external performance indices.- Evaluation Procedures for Forecasting with Spatio-Temporal Data.- A Blended Metric for Multi-label Optimisation and Evaluation.