Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
439
Utgivningsdatum
2019-08-30
Upplaga
1st ed. 2019
Förlag
Springer Nature Switzerland AG
Medarbetare
Montavon, Grgoire / Vedaldi, Andrea
Illustrationer
119 Illustrations, color; 33 Illustrations, black and white; XI, 439 p. 152 illus., 119 illus. in co
Dimensioner
235 x 157 x 30 mm
Vikt
690 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030289539
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (häftad)

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Häftad Engelska, 2019-08-30
835
Skickas inom 5-8 vardagar.
Fri frakt inom Sverige för privatpersoner.
The development of "intelligent" systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to "intelligent" machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Visa hela texten

Passar bra ihop

  1. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
  2. +
  3. Software Technology: Methods and Tools

De som köpt den här boken har ofta också köpt Software Technology: Methods and Tools av Manuel Mazzara, Jean-Michel Bruel, Bertrand Meyer, Alexander Petrenko (häftad).

Köp båda 2 för 1670 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Explainable AI: Interpreting, Explaining ...

Innehållsförteckning

Towards Explainable Artificial Intelligence.- Transparency: Motivations and Challenges.- Interpretability in Intelligent Systems: A New Concept?.- Understanding Neural Networks via Feature Visualization: A Survey.- Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation.- Unsupervised Discrete Representation Learning.- Towards Reverse-Engineering Black-Box Neural Networks.- Explanations for Attributing Deep Neural Network Predictions.- Gradient-Based Attribution Methods.- Layer-Wise Relevance Propagation: An Overview.- Explaining and Interpreting LSTMs.- Comparing the Interpretability of Deep Networks via Network Dissection.- Gradient-Based vs. Propagation-Based Explanations: An Axiomatic Comparison.- The (Un)reliability of Saliency Methods.- Visual Scene Understanding for Autonomous Driving Using Semantic Segmentation.- Understanding Patch-Based Learning of Video Data by Explaining Predictions.- Quantum-Chemical Insights from Interpretable Atomistic Neural Networks.- Interpretable Deep Learning in Drug Discovery.- Neural Hydrology: Interpreting LSTMs in Hydrology.- Feature Fallacy: Complications with Interpreting Linear Decoding Weights in fMRI.- Current Advances in Neural Decoding.- Software and Application Patterns for Explanation Methods.