Complex Pattern Mining (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
250
Utgivningsdatum
2020-01-15
Upplaga
1st ed. 2020
Förlag
Springer Nature Switzerland AG
Medarbetare
Ceci, Michelangelo / Loglisci, Corrado
Illustrationer
47 Illustrations, color; 30 Illustrations, black and white; X, 250 p. 77 illus., 47 illus. in color.
Dimensioner
234 x 156 x 16 mm
Vikt
545 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783030366162
Complex Pattern Mining (inbunden)

Complex Pattern Mining

New Challenges, Methods and Applications

Inbunden Engelska, 2020-01-15
1679
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
Visa hela texten

Passar bra ihop

  1. Complex Pattern Mining
  2. +
  3. Discovery Science

De som köpt den här boken har ofta också köpt Discovery Science av Toon Calders, Michelangelo Ceci, Donato Malerba (häftad).

Köp båda 2 för 2528 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Complex Pattern Mining

Innehållsförteckning

Efficient Infrequent Pattern Mining using Negative Itemset Tree.- Hierarchical Adversarial Training for Multi-Domain.- Optimizing C-index via Gradient Boosting in Medical Survival Analysis.- Order-preserving Biclustering Based on FCA and Pattern Structures.- A text-based regression approach to predict bug-fix time.- A Named Entity Recognition Approach for Albanian Using Deep Learning.- A Latitudinal Study on the Use of Sequential and Concurrency Patterns in Deviance Mining.- Efficient Declarative-based Process Mining using an Enhanced Framework.- Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks.- Classification and Clustering of Emotive Microblogs in Albanian: Two User-Oriented Tasks.