Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
175
Utgivningsdatum
2020-01-04
Upplaga
1st ed. 2019
Förlag
Springer Nature Switzerland AG
Medarbetare
Juarez, Jose M. / Lenz, Richard
Illustrationer
42 Illustrations, color; 14 Illustrations, black and white; XII, 175 p. 56 illus., 42 illus. in colo
Dimensioner
234 x 156 x 10 mm
Vikt
272 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783030374457

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 2629, 2019, Revised Selected Papers

Häftad,  Engelska, 2020-01-04
569
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems Kan tyvärr inte längre levereras innan julafton.
This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems. The volume contains 5 full papers from KR4HC/ProHealth, which were selected out of 13 submissions. For TEAAM 8 papers out of 10 submissions were accepted for publication.
Visa hela texten

Passar bra ihop

  1. Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
  2. +
  3. Atomic Habits

De som köpt den här boken har ofta också köpt Atomic Habits av James Clear (häftad).

Köp båda 2 för 769 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

KR4HC/ProHealth - Joint Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care.- A practical exercise on re-engineering clinical guideline models using different representation languages.- A method for goal-oriented guideline modeling in PROforma and ist preliminary evaluation.- Differential diagnosis of bacterial and viral meningitis using Dominance-Based Rough Set Approach.- Modelling ICU Patients to Improve Care Requirements and Outcome Prediction of Acute Respiratory Distress Syndrome: A Supervised Learning Approach.- Deep learning for haemodialysis time series classification.- TEAAM - Workshop on Transparent, Explainable and Affective AI in Medical Systems.- Towards Understanding ICU Treatments using Patient Health Trajectories.- An Explainable Approach of Inferring Potential Medication Effects from Social Media Data.- Exploring antimicrobial resistance prediction using post-hoc interpretable methods.- Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening.- A Computational Framework towards Medical Image Explanation.- A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis.- Self-organizing maps using acoustic features for prediction of state change in bipolar disorder.- Explainable machine learning for modeling of early postoperative mortality in lung cancer.