- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 133
- Utgivningsdatum
- 2020-01-04
- Upplaga
- 1st ed. 2020
- Förlag
- Springer Nature Switzerland AG
- Medarbetare
- Renso, Chiara / Matwin, Stan
- Illustrationer
- 47 Illustrations, color; 46 Illustrations, black and white; IX, 133 p. 93 illus., 47 illus. in color
- Dimensioner
- 234 x 156 x 8 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783030380809
- 213 g
Du kanske gillar
-
Adobe Premiere Pro Classroom in a Book (2020 release)
Maxim Jago
Mixed media productMultiple-Aspect Analysis of Semantic Trajectories
First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Wurzburg, Germany, September 16, 2019, Proceedings
629Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.Passar bra ihop
De som köpt den här boken har ofta också köpt Discovering Statistics Using IBM SPSS Statistics av Andy Field (häftad).
Köp båda 2 för 1178 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Mobility Data
Chiara Renso
-
Revolutionizing Aircraft Materials and Processes
Spiros Pantelakis, Konstantinos Tserpes
-
Economics of Grids, Clouds, Systems, and Services
Jose Angel Banares, Konstantinos Tserpes, Joern Altmann
-
Discovery Science
Annalisa Appice, Grigorios Tsoumakas, Yannis Manolopoulos, Stan Matwin
Innehållsförteckning
Learning from our Movements - The Mobility Data Analytics Era.- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection.- Nowcasting Unemployment Rates with Smartphone GPS data.- Online long-term trajectory prediction based on mined route patterns.- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data.- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams.- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning.- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction.- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations.