- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 196
- Utgivningsdatum
- 2020-09-21
- Upplaga
- 1st ed. 2020
- Förlag
- Springer Nature Switzerland AG
- Medarbetare
- Svoboda, David / Wolterink, Jelmer M.
- Illustrationer
- 61 Illustrations, color; 46 Illustrations, black and white; X, 196 p. 107 illus., 61 illus. in color
- Dimensioner
- 234 x 156 x 11 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783030595197
- 300 g
Du kanske gillar
-
Can't Hurt Me
David Goggins
HäftadNever Finished
David Goggins
HäftadSimulation and Synthesis in Medical Imaging
5th International Workshop, SASHIMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
679- Skickas inom 7-10 vardagar.
- Gratis frakt inom Sverige över 199 kr för privatpersoner.
Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Atomic Habits av James Clear (häftad).
Köp båda 2 för 848 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
The CERT Oracle Secure Coding Standard for Java
Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, David Svoboda
-
Biomedical Image Synthesis and Simulation
Ninon Burgos
-
CERT Oracle Secure Coding Standard for Java, The
Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, David Svoboda
-
Exploring My Freedom: gay diary
David Svoboda
Innehållsförteckning
Contrast Adaptive Tissue Classification by Alternating Segmentation and Synthesis.- 3D Brain MRI GAN-based Synthesis Conditioned on Partial Volume Maps.- Synthesizing Realistic Brain MR Images With Noise Control.- Simulated Diffusion Weighted Images Based on Model-Predicted Tumor Growth.- Blind MRI Brain Lesion Inpainting Using Deep Learning.- High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations.- A Method for Tumor Treating Fields Fast Estimation.- Heterogeneous Virtual Population of Simulated CMR Images for Improving the Generalization of Cardiac Segmentation Algorithms.- DyeFreeNet: Deep Virtual Contrast CT Synthesis.- A Gaussian Process Model Based Generative Framework for Data Augmentation of Multi-modal 3D Image Volumes.- Frequency-selective Learning for CT to MR Synthesis.- Uncertainty-aware Multi-resolution Whole-body MR to CT Synthesis.- UltraGAN: Ultrasound Enhancement Through Adversarial Generation.- Improving Endoscopic Decision Support Systems by Translating Between Imaging Modalities.- An Unsupervised Adversarial Learning Approach to Fundus Fluorescein Angiography Image Synthesis for Leakage Detection.- Towards Automatic Embryo Staging in 3D+t Microscopy Images Using Convolutional Neural Networks and PointNets.- Train Small, Generate Big: Synthesis of Colorectal Cancer Histology Images.- Image Synthesis as a Pretext for Unsupervised Histopathological Diagnosis.- Auditory Nerve Fiber Health Estimation Using Patient Specific Cochlear Implant Stimulation Models.