- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 233
- Utgivningsdatum
- 2020-12-16
- Upplaga
- 1st ed. 2020
- Förlag
- Springer Nature Switzerland AG
- Medarbetare
- Lemaire, Vincent (ed.), Malinowski, Simon (ed.), Ifrim, Georgiana (ed.), Guyet, Thomas (ed.), Tavenard, Romain (ed.), Bagnall, Anthony (ed.)
- Illustrationer
- 67 Illustrations, color; 21 Illustrations, black and white; X, 233 p. 88 illus., 67 illus. in color.
- Dimensioner
- 234 x 156 x 13 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9783030657413
- 345 g
Du kanske gillar
-
Advanced Analytics and Learning on Temporal Data
5th ECML PKDD Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers
759Skickas inom 7-10 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt IoT Streams for Data-Driven Predictive Maintena... av Joao Gama, Sepideh Pashami, Albert Bifet, Moamar Sayed-Mouchawe, Holger Froening (häftad).
Köp båda 2 för 1678 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Neural Connectomics Challenge
Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray
This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the netwo...
-
Extraction et Gestion des Connaissances,
Vincent Lemaire, Jerome Aze
La slection d'articles publis dans le prsent recueil constitue les actes des 21me Journes Internationales Francophones "Extraction et Gestion des Connaissances" (EGC2021) qui se sont droules virtuellement du 25 au 29 janvier 2021. L'objectif de ce...
Innehållsförteckning
Temporal Data Clustering.- Classification of Univariate and Multivariate Time Series.- Early Classification of Temporal Data.- Deep Learning and Learning Representations for Temporal Data.- Modeling Temporal Dependencies.- Advanced Forecasting and Prediction Models.- Space-Temporal Statistical Analysis.- Functional Data Analysis Methods.- Temporal Data Streams.- Interpretable Time-Series Analysis Methods.- Dimensionality Reduction, Sparsity, Algorithmic Complexity and Big Data Challenge.- Bio-Informatics, Medical, Energy Consumption, Temporal Data.