Data Analytics for Renewable Energy Integration (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
137
Utgivningsdatum
2017-01-19
Upplaga
1st ed. 2017
Förlag
Springer International Publishing AG
Medarbetare
Woon, Wei Lee (ed.), Aung, Zeyar (ed.), Kramer, Oliver (ed.), Madnick, Stuard (ed.)
Illustratör/Fotograf
Bibliographie
Illustrationer
58 Illustrations, black and white; VII, 137 p. 58 illus.
Dimensioner
234 x 156 x 8 mm
Vikt
218 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783319509464
Data Analytics for Renewable Energy Integration (häftad)

Data Analytics for Renewable Energy Integration

4th ECML PKDD Workshop, DARE 2016, Riva del Garda, Italy, September 23, 2016, Revised Selected Papers

Häftad Engelska, 2017-01-19
639
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes revised selected papers from the 4th ECML PKDD Workshop on Data Analytics for Renewable Energy Integration, DARE 2016, held in Riva del Garda, Italy, in September 2016. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book and handle topics such as time series forecasting, the detection of faults, cyber security, smart grid and smart cities, technology integration, demand response and many others.
Visa hela texten

Passar bra ihop

  1. Data Analytics for Renewable Energy Integration
  2. +
  3. Machine Learning and Knowledge Discovery in Databases

De som köpt den här boken har ofta också köpt Machine Learning and Knowledge Discovery in Dat... av Bettina Berendt, Bjoern Bringmann, Elisa Fromont, Gemma Garriga, Pauli Miettinen (häftad).

Köp båda 2 för 1408 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Locating Faults in Photovoltaic Systems Data.- Forecasting of Smart Meter Time Series Based on Neural Cybersecurity for Smart Cities: A Brief Review.- Machine Learning Prediction of Photovoltaic Energy from Satellite Sources.- Approximate Probabilistic Power Flow.- Dealing with Uncertainty: An Empirical Study on the Relevance of Renewable Energy Forecasting Methods.- Measuring Stakeholders' Perceptions of Cybersecurity for Renewable Energy Systems.- Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests.- Evolutionary Multi-Objective Ensembles for Wind Power Prediction.- A Semi-Automatic Approach for Tech Mining and Interactive Taxonomy Visualization.- Decomposition of Aggregate Electricity Demand into the Seasonal-Thermal Components for Demand-Side Management Applications in "Smart Grids".