Genetic Algorithm Essentials (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
92
Utgivningsdatum
2017-01-13
Upplaga
1st ed. 2017
Förlag
Springer International Publishing AG
Illustratör/Fotograf
Bibliographie 45 schwarz-weiße Abbildungen
Illustrationer
38 Illustrations, color; IX, 92 p. 38 illus. in color.
Dimensioner
234 x 156 x 8 mm
Vikt
327 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783319521558
Genetic Algorithm Essentials (inbunden)

Genetic Algorithm Essentials

Inbunden Engelska, 2017-01-13
1349
Skickas inom 3-6 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Visa hela texten

Passar bra ihop

  1. Genetic Algorithm Essentials
  2. +
  3. Learning Computer Architecture with Raspberry Pi

De som köpt den här boken har ofta också köpt Learning Computer Architecture with Raspberry Pi av Eben Upton, Jeffrey Duntemann, Ralph Roberts, Tim Mamtora, Ben Everard (häftad).

Köp båda 2 för 1598 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Oliver Kramer

Innehållsförteckning

Part I: Foundations.- Introduction.- Genetic Algorithms.- Parameters.- Part II: Solution Spaces.- Multimodality.- Constraints.- Multiple Objectives.- Part III: Advanced Concepts.- Theory.- Machine Learning.- Applications.- Part IV: Ending.- Summary and Outlook.- Index.- References.