Quantification of Contrast Kinetics in Clinical Imaging (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
184
Utgivningsdatum
2018-11-13
Upplaga
1st ed. 2018
Förlag
Springer International Publishing AG
Medarbetare
Schoots, Ivo
Illustratör/Fotograf
Bibliographie
Illustrationer
42 Illustrations, color; 17 Illustrations, black and white; XI, 184 p. 59 illus., 42 illus. in color
Dimensioner
234 x 156 x 11 mm
Vikt
286 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783319646374

Quantification of Contrast Kinetics in Clinical Imaging

Häftad,  Engelska, 2018-11-13
783
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 1 format & utgåvor
This book provides a comprehensive survey of the pharmacokinetic models used for the quantitative interpretation of contrast-enhanced imaging. It discusses all the available imaging technologies and the problems related to the calibration of the imaging system and accuracy of the estimated physiological parameters. Enhancing imaging modalities using contrast agents has opened up new opportunities for going beyond morphological information and enabling minimally invasive assessment of tissue and organ functionality down to the molecular level. In combination with mathematical modeling of the contrast agent kinetics, contrast- enhanced imaging has the potential to provide clinically valuable additional information by estimating quantitative physiological parameters. The book presents the broad spectrum of diagnostic possibilities provided by quantitative contrast-enhanced imaging, with a particular focus on cardiology and oncology, as well as novel developments in the area of quantitative molecular imaging along with their potential clinical applications. Given the variety of available techniques, the choice of the appropriate imaging modality and the most suitable pharmacokinetic model is often challenging. As such, the book provides a valuable technical guide for researchers, clinical scientists, and experts in the field who wish to better understand and properly apply tracer-kinetic modeling for quantitative contrast-enhanced imaging.
Visa hela texten

Passar bra ihop

  1. Quantification of Contrast Kinetics in Clinical Imaging
  2. +
  3. Co-Intelligence

De som köpt den här boken har ofta också köpt Co-Intelligence av Ethan Mollick (häftad).

Köp båda 2 för 1011 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Massimo Mischi (1973) received the M.Sc. degree in Electronic Engineering at La Sapienza University of Rome (Italy) in 1999. In 2004, he received the Ph.D. degree from the Eindhoven University of Technology (TU/e, the Netherlands). In 2007 he became assistant professor and since 2011 he is associate professor at the Electrical Engineering Faculty of the TU/e. Since 2013 he is director of the Biomedical Diagnostics Research Lab of the TU/e (www.bmdresearch.nl), and since 2014 he is director of the Healthcare Research program of the Electrical Engineering Faculty (TU/e). His research focuses on model-based quantitative analysis of biomedical signals and images, spanning from heart and muscle electrophysiology up to ultrasound and magnetic-resonance imaging. He was awarded with the STW VIDI Grant in 2009 and with the ERC Starting Grant in 2011 for his research on contrast-enhanced ultrasound imaging of angiogenesis for cancer diagnostics. Massimo Mischi has (co)authored over 200publications. He is Senior Member of the IEEE, vice-Chairman of the IEEE EMBS Benelux Chapter, Secretary of the Dutch Society of Medical Ultrasound (EFSUMB Section), and associate board member of the ESUI (Urological Imaging Section of the European Association of Urology). He also serves as associate editor for the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control and for the Journal BioMedical Engineering and Research (IRBM) published by Elsevier. Hessel Wijkstra (1955) received the M.Sc. degree in electrical engineering at the Twente University of Technology, Enschede, the Netherlands. He received at the same University the Ph.D. degree with the thesis: The flow pulse response of the ventricular pressure source. He has been performing bio-medical research in the department of Urology of the Radboud University Hospital, Nijmegen, the Netherlands. Since 2004 he is a faculty member of the department of Urology at the AMC University hospital, Amsterdam, the Netherlands. His main research topic is imaging, in particular contrast enhanced ultrasound, in the diagnosis and treatment of prostate and kidney cancer. Since November 2010 he is part-time professor at the Eindhoven University of Technology focusing on the clinical validation and implementation of contrast enhanced imaging techniques. Simona Turco received the M.Sc. degree in Biomedical Engineering from University of Pisa (Italy) in 2012, with graduation project focused on laser induced optical breakdown for skin rejuvenation, carried out at the Care & Health laboratories of Philips Research (Eindhoven, the Netherlands). In 2012, she joined the Biomedical Diagnostics (BM/d) Research Lab of the Eindhoven University of Technology (TU/e, Eindhoven) to pursue the Professional Doctor in Engineering (PDEng) diploma in Healthcare Systems Design, working on DCE-MRI dispersion imaging for prostate cancer localization. After obtaining her PDEng diploma in 2014, she became a PhD student at the BM/d research group, where she is currently investigating novel methods for contrast-enhanced and molecular imaging of cancer angiogenesis. Osama Soliman is qualified from the Medical School of Al-Azhar University, Cairo, Egypt in 1996 Summa Cum Laude. He followed clinical and research training in internal medicine and cardiology at the same institution (1997-2005) and later on (2005-2011) at the Thoraxcenter, Erasmus MC Rotterdam. In March 2011, he received the certificate of completion of training in internal medicine and cardiology. In 2000, he received the M.Sc. (Cum Laude) based on a dissertation entitled Intravascular ultrasound versus quantitative coronary angiography for the assessment of immediate results of coronary artery stenting. In 2007, he received the PhD degree from the Erasmus University Rotterdam based on a dissertation entitled Advanced quantitative echocardiography guiding therapy for heart failure. He has published more than 120 article

Innehållsförteckning

Introduction to contrast-enhanced imaging.- Introduction to pharmacokinetic modeling.- Intravascular contrast agents (UCA, blood-pool MRI).- Extravascular contrast agents (MRI, CT, nanodroplets).- Molecular/targeted contrast agents (nuclear imaging and tUCA).