Genetic Algorithm Essentials (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
92
Utgivningsdatum
2018-07-13
Upplaga
Softcover reprint of the original 1st ed. 2017
Förlag
Springer International Publishing AG
Illustrationer
38 Illustrations, color; IX, 92 p. 38 illus. in color.
Dimensioner
234 x 156 x 6 mm
Vikt
159 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783319848341
Genetic Algorithm Essentials (häftad)

Genetic Algorithm Essentials

Häftad Engelska, 2018-07-13
1539
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Visa hela texten

Passar bra ihop

  1. Genetic Algorithm Essentials
  2. +
  3. Dimensionality Reduction with Unsupervised Nearest Neighbors

De som köpt den här boken har ofta också köpt Dimensionality Reduction with Unsupervised Near... av Oliver Kramer (häftad).

Köp båda 2 för 2938 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av Oliver Kramer

Innehållsförteckning

Part I: Foundations.- Introduction.- Genetic Algorithms.- Parameters.- Part II: Solution Spaces.- Multimodality.- Constraints.- Multiple Objectives.- Part III: Advanced Concepts.- Theory.- Machine Learning.- Applications.- Part IV: Ending.- Summary and Outlook.- Index.- References.